一、索引原理与慢查询优化

一、介绍

  1、为何需要有索引

  一般的应用系统,读写比例是10:1左右,而且插入操作和一般的更新操作很少出现性能问题。在生产环境中,我们遇到最多的、也是最容易出问题的还是一些负责的查询操作。因此查询语句的优化显然是重中之重。说起加速查询,就不得不提起索引了。

  2、什么是索引?

  索引在MySQL中也叫做“键”,是存储引擎用于快速找到记录的一种数据结构。索引对于良好的性能非常关键。尤其是表中的数据量越来越大时,索引对于性能的影响愈发重要。

  索引优化应该是对查询性能优化最有效的手段了。索引能够轻易将查询性能提高好几个数量级。

  索引相当于字典的音序表,若要查某个词,若不是音序表,则需要从几百页中逐页去查。

       

  3、你是否对索引存在误解

  索引是应用程序设计和开发的一个重要方面。

  索引的设定:若索引太多,应用程序的性能可能会受到影响;而索引太少,对查询性能又会产生影响。找到一个平衡点,这对于应用程序的性能至关重要。

  如果知道数据的使用,从一开始就应该在需要处添加索引。开发人员往往对数据库的使用停留在应用的层面,比如编写SQL语句、存储过程之类,他们甚至可能不知道索引的存在,或认为事后让相关DBA加上即可。DBA往往不够了解业务的数据流,而添加索引需要通过监控大量的SQL语句进而从中找到问题,这个步骤所需的时间肯定是远大于初始添加索引所需的时间,并且可能会遗漏一部分的索引。

二、索引的原理

  1、索引原理

  索引的目的:提高查询效率。例如:查字典、查航班等。

  索引的本质:通过不断地缩小想要获取数据的范围来刷选出最终想要的结果,同时把随机的事件变成顺序的事件。也就是说,有了这种索引机制,我们可以总是用同一查找方式来锁定数据。

  2、磁盘IO与预读

  前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间可以分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所需要的时间,主流磁盘一般在5ms以下;旋转延迟就是我们经常听说的磁盘转速,比如一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,一般在零点几毫秒,相对于前两个时间可以忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要知道一台500 -MIPS(Million Instructions Per Second)的机器每秒可以执行5亿条指令,因为指令依靠的是电的性质,换句话说执行一次IO的时间可以执行约450万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。下图是计算机硬件延迟的对比图,供大家参考:

  考虑到磁盘IO是非常高昂的操作,计算机操作系统做了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,因为局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据我们称之为一页(page)

三、索引的数据结构

  1、索引的数据结构简介

  任何一种数据结构都不是凭空产生的,一定会有它的背景和使用场景,我们现在总结一下,我们需要这种数据结构能够做些什么,其实很简单,那就是:每次查找数据时把磁盘IO次数控制在一个很小的数量级,最好是常数数量级。那么我们就想到如果一个高度可控的多路搜索树是否能满足需求呢?就这样,b+树应运而生(B+树是通过二叉查找树,再由平衡二叉树,B树演化而来)。

  

  如上图是一颗b+树,关于b+树的定义可以参见B+树,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。

  2、b+树的查找过程 

  b+树的查找过程如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。

  3、b+树的性质

    1.索引字段要尽量的小:

  通过上面的分析,我们知道IO次数取决于b+数的高度h,假设当前数据表的数据为N,每个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N一定的情况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为什么每个数据项,即索引字段要尽量的小,比如int占4字节,要比bigint8字节少一半。这也是为什么b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于1时将会退化成线性表。    

    2.索引的最左匹配特性

  当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。

   四、聚集索引与辅助索引

  1、数据库中,B+树索引的分类及区别

  在数据库中,B+树的高度一般都在2~4层,这也就是说查找某一个键值的行记录时最多只需要2到4次IO,这倒不错。因为当前一般的机械硬盘每秒至少可以做100次IO,2~4次的IO意味着查询时间只需要0.02~0.04秒。

  数据库中的B+树索引可以分为聚集索引(clustered index)和辅助索引(secondary index),

  聚集索引与辅助索引相同的是:不管是聚集索引还是辅助索引,其内部都是B+树的形式,即高度是平衡的,叶子结点存放着所有的数据。

  聚集索引与辅助索引不同的是:叶子结点存放的是否是一整行的信息

  2、聚集索引

    1、介绍
#InnoDB存储引擎表示索引组织表,即表中数据按照主键顺序存放。而聚集索引(clustered index)就是按照每张表的主键构造一棵B+树,同时叶子结点存放的即为整张表的行记录数据,也将聚集索引的叶子结点称为数据页。聚集索引的这个特性决定了索引组织表中数据也是索引的一部分。同B+树数据结构一样,每个数据页都通过一个双向链表来进行链接。

#如果未定义主键,MySQL取第一个唯一索引(unique)而且只含非空列(NOT NULL)作为主键,InnoDB使用它作为聚簇索引。

#如果没有这样的列,InnoDB就自己产生一个这样的ID值,它有六个字节,而且是隐藏的,使其作为聚簇索引。

#由于实际的数据页只能按照一棵B+树进行排序,因此每张表只能拥有一个聚集索引。在多少情况下,查询优化器倾向于采用聚集索引。因为聚集索引能够在B+树索引的叶子节点上直接找到数据。此外由于定义了数据的逻辑顺序,聚集索引能够特别快地访问针对范围值得查询。

    2、聚集索引的好处一:

  它对主键的排序查找和范围查找速度非常快,叶子节点的数据就是用户所要查询的数据。

  若用户需要查找一张表,查询最后的10个用户信息,由于B+数据索引是双向链表,所以用户可以快速找到最后一个数据页,并去除10条记录。

#参照第六小结测试索引的准备阶段来创建出表s1
mysql> desc s1; #最开始没有主键
+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id | int(11) | NO | | NULL | |
| name | varchar(20) | YES | | NULL | |
| gender | char(6) | YES | | NULL | |
| email | varchar(50) | YES | | NULL | |
+--------+-------------+------+-----+---------+-------+
rows in set (0.00 sec) mysql> explain select * from s1 order by id desc limit 10; #Using filesort,需要二次排序
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+----------------+
| 1 | SIMPLE | s1 | NULL | ALL | NULL | NULL | NULL | NULL | 2633472 | 100.00 | Using filesort |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+----------------+
row in set, 1 warning (0.11 sec) mysql> alter table s1 add primary key(id); #添加主键
Query OK, 0 rows affected (13.37 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> explain select * from s1 order by id desc limit 10; #基于主键的聚集索引在创建完毕后就已经完成了排序,无需二次排序
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+-------+
| 1 | SIMPLE | s1 | NULL | index | NULL | PRIMARY | 4 | NULL | 10 | 100.00 | NULL |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+-------+
row in set, 1 warning (0.04 sec)

有无主键查询速度对比

    3、聚集索引的好处二:

  范围查询(range query),即若要查找主键某一范围内的数据,通过叶子节点的上层中间节点就可以得到页的范围,之后直接读取数据页即可。

mysql> alter table s1 drop primary key;
Query OK, 2699998 rows affected (24.23 sec)
Records: 2699998 Duplicates: 0 Warnings: 0 mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id | int(11) | NO | | NULL | |
| name | varchar(20) | YES | | NULL | |
| gender | char(6) | YES | | NULL | |
| email | varchar(50) | YES | | NULL | |
+--------+-------------+------+-----+---------+-------+
rows in set (0.12 sec) mysql> explain select * from s1 where id > 1 and id < 1000000; #没有聚集索引,预估需要检索的rows数如下
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | s1 | NULL | ALL | NULL | NULL | NULL | NULL | 2690100 | 11.11 | Using where |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
row in set, 1 warning (0.00 sec) mysql> alter table s1 add primary key(id);
Query OK, 0 rows affected (16.25 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> explain select * from s1 where id > 1 and id < 1000000; #有聚集索引,预估需要检索的rows数如下
+----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | s1 | NULL | range | PRIMARY | PRIMARY | 4 | NULL | 1343355 | 100.00 | Using where |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+
row in set, 1 warning (0.09 sec)

范围查询对比数据

  2、辅助索引

  表中除了聚集索引外其他索引都是辅助索引(Secondary Index,也称为非聚集索引)。

  辅助索引与聚集索引的区别是:辅助索引的叶子节点不包含行记录的全部数据。

  叶子节点除了包含键值以外,每个叶子节点中的索引行中还包含一个书签(bookmark)。该书签用来告诉InnoDB存储引擎去哪里可以找到与索引相对应的行数据。

  由于InnoDB存储引擎是索引组织表,因此InnoDB存储引擎的辅助索引的书签就是相应行数据的聚集索引键。如下图

  辅助索引的存在并不影响数据在聚集索引中的组织,因此每张表上可以有多个辅助索引,但只能有一个聚集索引。当通过辅助索引来寻找数据时,InnoDB存储引擎会遍历辅助索引并通过叶子级别的指针获得只想主键索引的主键,然后再通过主键索引来找到一个完整的行记录。

  举例来说,如果在一棵高度为3的辅助索引树种查找数据,那需要对这个辅助索引树遍历3次找到指定主键,如果聚集索引树的高度同样为3,那么还需要对聚集索引树进行3次查找,最终找到一个完整的行数据所在的页,因此一共需要6次逻辑IO访问才能得到最终的一个数据页。

五、MySQL索引管理

  1、功能

  索引的功能就是加速查找

  MySQL中的parimary key,unique,联合唯一也都是索引,这些索引除了加速查找意外,还有约束的功能

  2、MySQL常见的索引

普通索引INDEX:加速查找

唯一索引:
-主键索引PRIMARY KEY:加速查找+约束(不为空、不能重复)
-唯一索引UNIQUE:加速查找+约束(不能重复) 联合索引:
-PRIMARY KEY(id,name):联合主键索引
-UNIQUE(id,name):联合唯一索引
-INDEX(id,name):联合普通索引
举个例子来说,比如你在为某商场做一个会员卡的系统。

这个系统有一个会员表
有下列字段:
会员编号 INT
会员姓名 VARCHAR(10)
会员身份证号码 VARCHAR(18)
会员电话 VARCHAR(10)
会员住址 VARCHAR(50)
会员备注信息 TEXT 那么这个 会员编号,作为主键,使用 PRIMARY
会员姓名 如果要建索引的话,那么就是普通的 INDEX
会员身份证号码 如果要建索引的话,那么可以选择 UNIQUE (唯一的,不允许重复) #除此之外还有全文索引,即FULLTEXT
会员备注信息 , 如果需要建索引的话,可以选择全文搜索。
用于搜索很长一篇文章的时候,效果最好。
用在比较短的文本,如果就一两行字的,普通的 INDEX 也可以。
但其实对于全文搜索,我们并不会使用MySQL自带的该索引,而是会选择第三方软件如Sphinx,专门来做全文搜索。 #其他的如空间索引SPATIAL,了解即可,几乎不用 各个索引的应用场景

索引的应用场景

  3、索引的两大类型hash与btree

#我们可以在创建上述索引的时候,为其指定索引类型,分两类
hash类型的索引:查询单条快,范围查询慢
btree类型的索引:b+树,层数越多,数据量指数级增长(我们就用它,因为innodb默认支持它) #不同的存储引擎支持的索引类型也不一样
InnoDB 支持事务,支持行级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
MyISAM 不支持事务,支持表级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
Memory 不支持事务,支持表级别锁定,支持 B-tree、Hash 等索引,不支持 Full-text 索引;
NDB 支持事务,支持行级别锁定,支持 Hash 索引,不支持 B-tree、Full-text 等索引;
Archive 不支持事务,支持表级别锁定,不支持 B-tree、Hash、Full-text 等索引;

  4、创建/删除索引的语法

#方法一:创建表时
  CREATE TABLE 表名 (
字段名1 数据类型 [完整性约束条件…],
字段名2 数据类型 [完整性约束条件…],
[UNIQUE | FULLTEXT | SPATIAL ] INDEX | KEY
[索引名] (字段名[(长度)] [ASC |DESC])
); #方法二:CREATE在已存在的表上创建索引
CREATE [UNIQUE | FULLTEXT | SPATIAL ] INDEX 索引名
ON 表名 (字段名[(长度)] [ASC |DESC]) ; #方法三:ALTER TABLE在已存在的表上创建索引
ALTER TABLE 表名 ADD [UNIQUE | FULLTEXT | SPATIAL ] INDEX
索引名 (字段名[(长度)] [ASC |DESC]) ; #删除索引:DROP INDEX 索引名 ON 表名字;
#方式一
create table t1(
id int,
name char,
age int,
sex enum('male','female'),
unique key uni_id(id),
index ix_name(name) #index没有key
); #方式二
create index ix_age on t1(age); #方式三
alter table t1 add index ix_sex(sex); #查看
mysql> show create table t1;
| t1 | CREATE TABLE `t1` (
`id` int(11) DEFAULT NULL,
`name` char(1) DEFAULT NULL,
`age` int(11) DEFAULT NULL,
`sex` enum('male','female') DEFAULT NULL,
UNIQUE KEY `uni_id` (`id`),
KEY `ix_name` (`name`),
KEY `ix_age` (`age`),
KEY `ix_sex` (`sex`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1

示例代码

六、测试索引

  1、准备

#1. 准备表
create table s1(
id int,
name varchar(20),
gender char(6),
email varchar(50)
); #2. 创建存储过程,实现批量插入记录
delimiter $$ #声明存储过程的结束符号为$$
create procedure auto_insert1()
BEGIN
declare i int default 1;
while(i<3000000)do
insert into s1 values(i,'egon','male',concat('egon',i,'@oldboy'));
set i=i+1;
end while;
END$$ #$$结束
delimiter ; #重新声明分号为结束符号 #3. 查看存储过程
show create procedure auto_insert1\G #4. 调用存储过程
call auto_insert1();

  2、在没有索引时,测试查询速度

无索引:mysql根本就不知道到底是否存在id等于333333333的记录,只能把数据表从头到尾扫描一遍,此时有多少个磁盘块就需要进行多少IO操作,所以查询速度很慢
mysql> select * from s1 where id=333333333;
Empty set (0.33 sec)

  3、在表中已经存在大量数据的前提下,为某个字段段建立索引,建立速度会很慢

  4、在索引建立完毕后,以该字段为查询条件时,查询速度提升明显

PS:

1. mysql先去索引表里根据b+树的搜索原理很快搜索到id等于333333333的记录不存在,IO大大降低,因而速度明显提升

2. 我们可以去mysql的data目录下找到该表,可以看到占用的硬盘空间多了

3. 需要注意,如下图

      

  5、总结

#1. 一定是为搜索条件的字段创建索引,比如select * from s1 where id = 333;就需要为id加上索引

#2. 在表中已经有大量数据的情况下,建索引会很慢,且占用硬盘空间,建完后查询速度加快
比如create index idx on s1(id);会扫描表中所有的数据,然后以id为数据项,创建索引结构,存放于硬盘的表中。
建完以后,再查询就会很快了。 #3. 需要注意的是:innodb表的索引会存放于s1.ibd文件中,而myisam表的索引则会有单独的索引文件table1.MYI MySAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。而在innodb中,表数据文件本身就是按照B+Tree(BTree即Balance True)组织的一个索引结构,这棵树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,因此innodb表数据文件本身就是主索引。
因为inndob的数据文件要按照主键聚集,所以innodb要求表必须要有主键(Myisam可以没有),如果没有显式定义,则mysql系统会自动选择一个可以唯一标识数据记录的列作为主键,如果不存在这种列,则mysql会自动为innodb表生成一个隐含字段作为主键,这字段的长度为6个字节,类型为长整型.

七、正确使用索引

  1、索引未命中

  并不是说我们创建了索引就一定会加快查询速度,若想利用索引达到预想的提高速度的效率,我们添加索引时,必须遵循以下问题

    1、范围问题,或者条件不明确,条件中出现这些符号或关键字:>、>=、<、<=、!= 、between...and...、like

  大于号 >、小于号<

  不等于号 !=

  between ..and..

  like

    2、尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录
#先把表中的索引都删除,让我们专心研究区分度的问题
mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id | int(11) | YES | MUL | NULL | |
| name | varchar(20) | YES | | NULL | |
| gender | char(5) | YES | | NULL | |
| email | varchar(50) | YES | MUL | NULL | |
+--------+-------------+------+-----+---------+-------+
rows in set (0.00 sec) mysql> drop index a on s1;
Query OK, 0 rows affected (0.20 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> drop index d on s1;
Query OK, 0 rows affected (0.18 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id | int(11) | YES | | NULL | |
| name | varchar(20) | YES | | NULL | |
| gender | char(5) | YES | | NULL | |
| email | varchar(50) | YES | | NULL | |
+--------+-------------+------+-----+---------+-------+
rows in set (0.00 sec)

先把表中的索引都删除,让我们专心研究区分度的问题

我们编写存储过程为表s1批量添加记录,name字段的值均为egon,也就是说name这个字段的区分度很低(gender字段也是一样的,我们稍后再搭理它)

回忆b+树的结构,查询的速度与树的高度成反比,要想将树的高低控制的很低,需要保证:在某一层内数据项均是按照从左到右,从小到大的顺序依次排开,即左1<左2<左3<...

而对于区分度低的字段,无法找到大小关系,因为值都是相等的,毫无疑问,还想要用b+树存放这些等值的数据,只能增加树的高度,字段的区分度越低,则树的高度越高。极端的情况,索引字段的值都一样,那么b+树几乎成了一根棍。本例中就是这种极端的情况,name字段所有的值均为'egon'

#现在我们得出一个结论:为区分度低的字段建立索引,索引树的高度会很高,然而这具体会带来什么影响呢???

#1:如果条件是name='xxxx',那么肯定是可以第一时间判断出'xxxx'是不在索引树中的(因为树中所有的值均为'egon’),所以查询速度很快

#2:如果条件正好是name='egon',查询时,我们永远无法从树的某个位置得到一个明确的范围,只能往下找,往下找,往下找。。。这与全表扫描的IO次数没有多大区别,所以速度很慢

分析原因

    3、=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式
    4、索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’) 
    5、and/or
1、and与or的逻辑
条件1 and 条件2:所有条件都成立才算成立,但凡要有一个条件不成立则最终结果不成立
条件1 or 条件2:只要有一个条件成立则最终结果就成立 2、and的工作原理
条件:
a = 10 and b = 'xxx' and c > 3 and d =4
索引:
制作联合索引(d,a,b,c)
工作原理:
对于连续多个and:mysql会按照联合索引,从左到右的顺序找一个区分度高的索引字段(这样便可以快速锁定很小的范围),加速查询,即按照d—>a->b->c的顺序 3、or的工作原理
条件:
a = 10 or b = 'xxx' or c > 3 or d =4
索引:
制作联合索引(d,a,b,c) 工作原理:
对于连续多个or:mysql会按照条件的顺序,从左到右依次判断,即a->b->c->d

  在左边条件成立但是索引字段的区分度低的情况下(name与gender均属于这种情况),会依次往右找到一个区分度高的索引字段,加速查询

  经过分析,在条件为name='egon' and gender='male' and id>333 and email='xxx'的情况下,我们完全没必要为前三个条件的字段加索引,因为只能用上email字段的索引,前三个字段的索引反而会降低我们的查询效率

    6、最左前缀匹配原则(详见第八小节),非常重要的原则,对于组合索引mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配(指的是范围大了,有索引速度也慢),比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
    7、其他情况
- 使用函数
select * from tb1 where reverse(email) = 'egon'; - 类型不一致
如果列是字符串类型,传入条件是必须用引号引起来,不然...
select * from tb1 where email = 999; #排序条件为索引,则select字段必须也是索引字段,否则无法命中
- order by
select name from s1 order by email desc;
当根据索引排序时候,select查询的字段如果不是索引,则速度仍然很慢
select email from s1 order by email desc;
特别的:如果对主键排序,则还是速度很快:
select * from tb1 order by nid desc; - 组合索引最左前缀
如果组合索引为:(name,email)
name and email -- 命中索引
name -- 命中索引
email -- 未命中索引 - count(1)或count(列)代替count(*)在mysql中没有差别了 - create index xxxx on tb(title(19)) #text类型,必须制定长度

  2、其他注意事项

- 避免使用select *
- count(1)或count(列) 代替 count(*)
- 创建表时尽量时 char 代替 varchar
- 表的字段顺序固定长度的字段优先
- 组合索引代替多个单列索引(经常使用多个条件查询时)
- 尽量使用短索引
- 使用连接(JOIN)来代替子查询(Sub-Queries)
- 连表时注意条件类型需一致
- 索引散列值(重复少)不适合建索引,例:性别不适合

八、联合索引与覆盖索引

  1、联合索引

  联合索引指对表上的多个列合起来做一个索引。联合索引的创建方法与单个索引的创建方法一样,不同之处仅在于有多个索引列,如下

mysql> create table t(
-> a int,
-> b int,
-> primary key(a),
-> key idx_a_b(a,b)
-> );
Query OK, 0 rows affected (0.11 sec)

  那么何时需要使用联合索引呢?在讨论这个问题之前,先来看一下联合索引内部的结果。从本质上来说,联合索引就是一棵B+树,不同的是联合索引的键值得数量不是1,而是>=2。接着来讨论两个整型列组成的联合索引,假定两个键值得名称分别为a、b如图

  可以看到这与我们之前看到的单个键的B+树并没有什么不同,键值都是排序的,通过叶子结点可以逻辑上顺序地读出所有数据,就上面的例子来说,即(1,1),(1,2),(2,1),(2,4),(3,1),(3,2),数据按(a,b)的顺序进行了存放。

  因此,对于查询select * from table where a=xxx and b=xxx, 显然是可以使用(a,b) 这个联合索引的,对于单个列a的查询select * from table where a=xxx,也是可以使用(a,b)这个索引的。

  但对于b列的查询select * from table where b=xxx,则不可以使用(a,b) 索引,其实你不难发现原因,叶子节点上b的值为1、2、1、4、1、2显然不是排序的,因此对于b列的查询使用不到(a,b) 索引

  联合索引的第二个好处是在第一个键相同的情况下,已经对第二个键进行了排序处理,例如在很多情况下应用程序都需要查询某个用户的购物情况,并按照时间进行排序,最后取出最近三次的购买记录,这时使用联合索引可以帮我们避免多一次的排序操作,因为索引本身在叶子节点已经排序了,如下

#===========准备表==============
create table buy_log(
userid int unsigned not null,
buy_date date
); insert into buy_log values
(1,'2009-01-01'),
(2,'2009-01-01'),
(3,'2009-01-01'),
(1,'2009-02-01'),
(3,'2009-02-01'),
(1,'2009-03-01'),
(1,'2009-04-01'); alter table buy_log add key(userid);
alter table buy_log add key(userid,buy_date); #===========验证==============
mysql> show create table buy_log;
| buy_log | CREATE TABLE `buy_log` (
`userid` int(10) unsigned NOT NULL,
`buy_date` date DEFAULT NULL,
KEY `userid` (`userid`),
KEY `userid_2` (`userid`,`buy_date`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 | #可以看到possible_keys在这里有两个索引可以用,分别是单个索引userid与联合索引userid_2,但是优化器最终选择了使用的key是userid因为该索引的叶子节点包含单个键值,所以理论上一个页能存放的记录应该更多
mysql> explain select * from buy_log where userid=2;
+----+-------------+---------+------+-----------------+--------+---------+-------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+---------+------+-----------------+--------+---------+-------+------+-------+
| 1 | SIMPLE | buy_log | ref | userid,userid_2 | userid | 4 | const | 1 | |
+----+-------------+---------+------+-----------------+--------+---------+-------+------+-------+
row in set (0.00 sec) #接着假定要取出userid为1的最近3次的购买记录,用的就是联合索引userid_2了,因为在这个索引中,在userid=1的情况下,buy_date都已经排序好了
mysql> explain select * from buy_log where userid=1 order by buy_date desc limit 3;
+----+-------------+---------+------+-----------------+----------+---------+-------+------+--------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+---------+------+-----------------+----------+---------+-------+------+--------------------------+
| 1 | SIMPLE | buy_log | ref | userid,userid_2 | userid_2 | 4 | const | 4 | Using where; Using index |
+----+-------------+---------+------+-----------------+----------+---------+-------+------+--------------------------+
row in set (0.00 sec) #ps:如果extra的排序显示是Using filesort,则意味着在查出数据后需要二次排序 #对于联合索引(a,b),下述语句可以直接使用该索引,无需二次排序
select ... from table where a=xxx order by b; #然后对于联合索引(a,b,c)来首,下列语句同样可以直接通过索引得到结果
select ... from table where a=xxx order by b;
select ... from table where a=xxx and b=xxx order by c; #但是对于联合索引(a,b,c),下列语句不能通过索引直接得到结果,还需要自己执行一次filesort操作,因为索引(a,c)并未排序
select ... from table where a=xxx order by c;

  2、覆盖索引

  InnoDB存储引擎支持覆盖索引(covering index,或称索引覆盖),即从辅助索引中就可以得到查询记录,而不需要查询聚集索引中的记录。

  使用覆盖索引的一个好处是:辅助索引不包含整行记录的所有信息,故其大小要远小于聚集索引,因此可以减少大量的IO操作


  注意:覆盖索引技术最早是在InnoDB Plugin中完成并实现,这意味着对于InnoDB版本小于1.0的,或者MySQL数据库版本为5.0以下的,InnoDB存储引擎不支持覆盖索引特性


  对于InnoDB存储引擎的辅助索引而言,由于其包含了主键信息,因此其叶子节点存放的数据为(primary key1,priamey key2,...,key1,key2,...)。例如

select age from s1 where id=123 and name = 'egon'; #id字段有索引,但是name字段没有索引,该sql命中了索引,但未覆盖,需要去聚集索引中再查找详细信息。
最牛逼的情况是,索引字段覆盖了所有,那全程通过索引来加速查询以及获取结果就ok了
mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id | int(11) | NO | | NULL | |
| name | varchar(20) | YES | | NULL | |
| gender | char(6) | YES | | NULL | |
| email | varchar(50) | YES | | NULL | |
+--------+-------------+------+-----+---------+-------+
rows in set (0.21 sec) mysql> explain select name from s1 where id=1000; #没有任何索引
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | s1 | NULL | ALL | NULL | NULL | NULL | NULL | 2688336 | 10.00 | Using where |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
row in set, 1 warning (0.00 sec) mysql> create index idx_id on s1(id); #创建索引
Query OK, 0 rows affected (4.16 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> explain select name from s1 where id=1000; #命中辅助索引,但是未覆盖索引,还需要从聚集索引中查找name
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------+
| 1 | SIMPLE | s1 | NULL | ref | idx_id | idx_id | 4 | const | 1 | 100.00 | NULL |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------+
row in set, 1 warning (0.08 sec) mysql> explain select id from s1 where id=1000; #在辅助索引中就找到了全部信息,Using index代表覆盖索引
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | s1 | NULL | ref | idx_id | idx_id | 4 | const | 1 | 100.00 | Using index |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
row in set, 1 warning (0.03 sec)

  覆盖索引的另外一个好处是对某些统计问题而言的。基于上一小结创建的表buy_log,查询计划如下

mysql> explain select count(*) from buy_log;
+----+-------------+---------+-------+---------------+--------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+---------+-------+---------------+--------+---------+------+------+-------------+
| 1 | SIMPLE | buy_log | index | NULL | userid | 4 | NULL | 7 | Using index |
+----+-------------+---------+-------+---------------+--------+---------+------+------+-------------+
1 row in set (0.00 sec)

  innodb存储引擎并不会选择通过查询聚集索引来进行统计。由于buy_log表有辅助索引,而辅助索引远小于聚集索引,选择辅助索引可以减少IO操作,故优化器的选择如上key为userid辅助索引

  对于(a,b)形式的联合索引,一般是不可以选择b中所谓的查询条件。但如果是统计操作,并且是覆盖索引,则优化器还是会选择使用该索引,如下

#联合索引userid_2(userid,buy_date),一般情况,我们按照buy_date是无法使用该索引的,但特殊情况下:查询语句是统计操作,且是覆盖索引,则按照buy_date当做查询条件时,也可以使用该联合索引
mysql> explain select count(*) from buy_log where buy_date >= '2011-01-01' and buy_date < '2011-02-01';
+----+-------------+---------+-------+---------------+----------+---------+------+------+--------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+---------+-------+---------------+----------+---------+------+------+--------------------------+
| 1 | SIMPLE | buy_log | index | NULL | userid_2 | 8 | NULL | 7 | Using where; Using index |
+----+-------------+---------+-------+---------------+----------+---------+------+------+--------------------------+
row in set (0.00 sec)

九、查询优化器

  关于explain命令相信大家并不陌生,具体用法和字段含义可以参考官网explain-output,这里需要强调rows是核心指标,绝大部分rows小的语句执行一定很快(有例外,下面会讲到)。所以优化语句基本上都是在优化rows。

   官网链接:https://dev.mysql.com/doc/refman/5.5/en/explain-output.html

执行计划:让mysql预估执行操作(一般正确)
all < index < range < index_merge < ref_or_null < ref < eq_ref < system/const
id,email 慢:
select * from userinfo3 where name='alex' explain select * from userinfo3 where name='alex'
type: ALL(全表扫描)
select * from userinfo3 limit 1;
快:
select * from userinfo3 where email='alex'
type: const(走索引)

相关链接:http://blog.itpub.net/29773961/viewspace-1767044/

十、慢查询

  1、慢查询优化的基本步骤

0.先运行看看是否真的很慢,注意设置SQL_NO_CACHE
1.where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高
2.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)
3.order by limit 形式的sql语句让排序的表优先查
4.了解业务方使用场景
5.加索引时参照建索引的几大原则
6.观察结果,不符合预期继续从0分析

  2、慢查询管理

慢日志
- 执行时间 > 10
- 未命中索引
- 日志文件路径 配置:
- 内存
show variables like '%query%';
show variables like '%queries%';
set global 变量名 = 值
- 配置文件
mysqld --defaults-file='E:\wupeiqi\mysql-5.7.16-winx64\mysql-5.7.16-winx64\my-default.ini' my.conf内容:
slow_query_log = ON
slow_query_log_file = D:/.... 注意:修改配置文件之后,需要重启服务
MySQL日志管理
========================================================
错误日志: 记录 MySQL 服务器启动、关闭及运行错误等信息
二进制日志: 又称binlog日志,以二进制文件的方式记录数据库中除 SELECT 以外的操作
查询日志: 记录查询的信息
慢查询日志: 记录执行时间超过指定时间的操作
中继日志: 备库将主库的二进制日志复制到自己的中继日志中,从而在本地进行重放
通用日志: 审计哪个账号、在哪个时段、做了哪些事件
事务日志或称redo日志: 记录Innodb事务相关的如事务执行时间、检查点等
========================================================
一、bin-log
1. 启用
# vim /etc/my.cnf
[mysqld]
log-bin[=dir\[filename]]
# service mysqld restart
2. 暂停
//仅当前会话
SET SQL_LOG_BIN=0;
SET SQL_LOG_BIN=1;
3. 查看
查看全部:
# mysqlbinlog mysql.000002
按时间:
# mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56"
# mysqlbinlog mysql.000002 --stop-datetime="2012-12-05 11:02:54"
# mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56" --stop-datetime="2012-12-05 11:02:54" 按字节数:
# mysqlbinlog mysql.000002 --start-position=260
# mysqlbinlog mysql.000002 --stop-position=260
# mysqlbinlog mysql.000002 --start-position=260 --stop-position=930
4. 截断bin-log(产生新的bin-log文件)
a. 重启mysql服务器
b. # mysql -uroot -p123 -e 'flush logs'
5. 删除bin-log文件
# mysql -uroot -p123 -e 'reset master' 二、查询日志
启用通用查询日志
# vim /etc/my.cnf
[mysqld]
log[=dir\[filename]]
# service mysqld restart 三、慢查询日志
启用慢查询日志
# vim /etc/my.cnf
[mysqld]
log-slow-queries[=dir\[filename]]
long_query_time=n
# service mysqld restart
MySQL 5.6:
slow-query-log=1
slow-query-log-file=slow.log
long_query_time=3
查看慢查询日志
测试:BENCHMARK(count,expr)
SELECT BENCHMARK(50000000,2*3); 日志管理

日志管理

二、MySQL的IDE工具、数据备份、pyMySQL模块

一、IDE工具介绍

  生产环境还是推荐使用MySQL命令行。常用的IDE工具:Navicat等

#需要掌握的
1. 测试+链接数据库
2. 新建库
3. 新建表,新增字段+类型+约束
4. 设计表:外键
5. 新建查询
6. 备份库/表 #注意:
批量加注释:ctrl+?键
批量去注释:ctrl+shift+?键

二、MySQL数据备份

  1、备份的方式

1. 物理备份: 直接复制数据库文件,适用于大型数据库环境。但不能恢复到异构系统中如Windows。
2. 逻辑备份: 备份的是建表、建库、插入等操作所执行SQL语句,适用于中小型数据库,效率相对较低。
3. 导出表: 将表导入到文本文件中。

  2、使用mysqldump实现逻辑备份

#语法:
# mysqldump -h 服务器 -u用户名 -p密码 数据库名 > 备份文件.sql #示例:
#单库备份
mysqldump -uroot -p123 db1 > db1.sql
mysqldump -uroot -p123 db1 table1 table2 > db1-table1-table2.sql #多库备份
mysqldump -uroot -p123 --databases db1 db2 mysql db3 > db1_db2_mysql_db3.sql #备份所有库
mysqldump -uroot -p123 --all-databases > all.sql

  2、恢复逻辑备份

#方法一:
[root@egon backup]# mysql -uroot -p123 < /backup/all.sql #方法二:
mysql> use db1;
mysql> SET SQL_LOG_BIN=0;
mysql> source /root/db1.sql #注:如果备份/恢复单个库时,可以修改sql文件
DROP database if exists school;
create database school;
use school;

  3、备份/恢复案例

#数据库备份/恢复实验一:数据库损坏
备份:
1. # mysqldump -uroot -p123 --all-databases > /backup/`date +%F`_all.sql
2. # mysql -uroot -p123 -e 'flush logs' //截断并产生新的binlog
3. 插入数据 //模拟服务器正常运行
4. mysql> set sql_log_bin=0; //模拟服务器损坏
mysql> drop database db; 恢复:
1. # mysqlbinlog 最后一个binlog > /backup/last_bin.log
2. mysql> set sql_log_bin=0;
mysql> source /backup/2014-02-13_all.sql //恢复最近一次完全备份
mysql> source /backup/last_bin.log //恢复最后个binlog文件 #数据库备份/恢复实验二:如果有误删除
备份:
1. mysqldump -uroot -p123 --all-databases > /backup/`date +%F`_all.sql
2. mysql -uroot -p123 -e 'flush logs' //截断并产生新的binlog
3. 插入数据 //模拟服务器正常运行
4. drop table db1.t1 //模拟误删除
5. 插入数据 //模拟服务器正常运行 恢复:
1. # mysqlbinlog 最后一个binlog --stop-position=260 > /tmp/1.sql
# mysqlbinlog 最后一个binlog --start-position=900 > /tmp/2.sql
2. mysql> set sql_log_bin=0;
mysql> source /backup/2014-02-13_all.sql //恢复最近一次完全备份
mysql> source /tmp/1.log //恢复最后个binlog文件
mysql> source /tmp/2.log //恢复最后个binlog文件 注意事项:
1. 完全恢复到一个干净的环境(例如新的数据库或删除原有的数据库)
2. 恢复期间所有SQL语句不应该记录到binlog中

案例

  4、实现自动化备份

备份计划:
1. 什么时间 2:00
2. 对哪些数据库备份
3. 备份文件放的位置 备份脚本:
[root@egon ~]# vim /mysql_back.sql
#!/bin/bash
back_dir=/backup
back_file=`date +%F`_all.sql
user=root
pass=123 if [ ! -d /backup ];then
mkdir -p /backup
fi # 备份并截断日志
mysqldump -u${user} -p${pass} --events --all-databases > ${back_dir}/${back_file}
mysql -u${user} -p${pass} -e 'flush logs' # 只保留最近一周的备份
cd $back_dir
find . -mtime +7 -exec rm -rf {} \; 手动测试:
[root@egon ~]# chmod a+x /mysql_back.sql
[root@egon ~]# chattr +i /mysql_back.sql
[root@egon ~]# /mysql_back.sql 配置cron:
[root@egon ~]# crontab -l
* * * /mysql_back.sql

  5、表的导出和导入

SELECT... INTO OUTFILE 导出文本文件
示例:
mysql> SELECT * FROM school.student1
INTO OUTFILE 'student1.txt'
FIELDS TERMINATED BY ',' //定义字段分隔符
OPTIONALLY ENCLOSED BY '”' //定义字符串使用什么符号括起来
LINES TERMINATED BY '\n' ; //定义换行符 mysql 命令导出文本文件
示例:
# mysql -u root -p123 -e 'select * from student1.school' > /tmp/student1.txt
# mysql -u root -p123 --xml -e 'select * from student1.school' > /tmp/student1.xml
# mysql -u root -p123 --html -e 'select * from student1.school' > /tmp/student1.html LOAD DATA INFILE 导入文本文件
mysql> DELETE FROM student1;
mysql> LOAD DATA INFILE '/tmp/student1.txt'
INTO TABLE school.student1
FIELDS TERMINATED BY ','
OPTIONALLY ENCLOSED BY '”'
LINES TERMINATED BY '\n';
#可能会报错
mysql> select * from db1.emp into outfile 'C:\\db1.emp.txt' fields terminated by ',' lines terminated by '\r\n';
ERROR 1238 (HY000): Variable 'secure_file_priv' is a read only variable #数据库最关键的是数据,一旦数据库权限泄露,那么通过上述语句就可以轻松将数据导出到文件中然后下载拿走,因而mysql对此作了限制,只能将文件导出到指定目录
在配置文件中
[mysqld]
secure_file_priv='C:\\' #只能将数据导出到C:\\下 重启mysql
重新执行上述语句

报错:Variable 'secure_file_priv' is a read only

  6、数据库迁移

务必保证在相同版本之间迁移
# mysqldump -h 源IP -uroot -p123 --databases db1 | mysql -h 目标IP -uroot -p456

三、pymysql模块

#安装
pip3 install pymysql

  1、链接、执行sql、关闭(游标)

import pymysql
user=input('用户名: ').strip()
pwd=input('密码: ').strip() #链接
conn=pymysql.connect(host='localhost',user='root',password='',database='egon',charset='utf8')
#游标
cursor=conn.cursor() #执行完毕返回的结果集默认以元组显示
#cursor=conn.cursor(cursor=pymysql.cursors.DictCursor) #执行sql语句
sql='select * from userinfo where name="%s" and password="%s"' %(user,pwd) #注意%s需要加引号
print(sql)
res=cursor.execute(sql) #执行sql语句,返回sql查询成功的记录数目
print(res) cursor.close()
conn.close() if res:
print('登录成功')
else:
print('登录失败')

  2、execute()之sql注入

  注意:符号一会注释掉它之后的sql,正确的语法:--至少有一个任意字符

  根本原理:根据程序的字符串拼接name=‘%s’,我们输入一个xxx' --haha,用我们输入的xxx'在程序中拼接成一个判断条件name='xxx' -- haha'

最后那一个空格,在一条sql语句中如果遇到select * from t1 where id > 3 -- and name='egon';则--之后的条件被注释掉了

#1、sql注入之:用户存在,绕过密码
egon' -- 任意字符 #2、sql注入之:用户不存在,绕过用户与密码
xxx' or 1=1 -- 任意字符

 解决方法:

# 原来是我们对sql进行字符串拼接
# sql="select * from userinfo where name='%s' and password='%s'" %(user,pwd)
# print(sql)
# res=cursor.execute(sql) #改写为(execute帮我们做字符串拼接,我们无需且一定不能再为%s加引号了)
sql="select * from userinfo where name=%s and password=%s" #!!!注意%s需要去掉引号,因为pymysql会自动为我们加上
res=cursor.execute(sql,[user,pwd]) #pymysql模块自动帮我们解决sql注入的问题,只要我们按照pymysql的规矩来。

  3、增、删、改:conn.commit()

import pymysql
#链接
conn=pymysql.connect(host='localhost',user='root',password='',database='egon')
#游标
cursor=conn.cursor() #执行sql语句
#part1
# sql='insert into userinfo(name,password) values("root","123456");'
# res=cursor.execute(sql) #执行sql语句,返回sql影响成功的行数
# print(res) #part2
# sql='insert into userinfo(name,password) values(%s,%s);'
# res=cursor.execute(sql,("root","123456")) #执行sql语句,返回sql影响成功的行数
# print(res) #part3
sql='insert into userinfo(name,password) values(%s,%s);'
res=cursor.executemany(sql,[("root","123456"),("lhf","12356"),("eee","156")]) #执行sql语句,返回sql影响成功的行数
print(res) conn.commit() #提交后才发现表中插入记录成功
cursor.close()
conn.close()

  4、查:fetchone,fetchmany,fetchall

import pymysql
#链接
conn=pymysql.connect(host='localhost',user='root',password='',database='egon')
#游标
cursor=conn.cursor() #执行sql语句
sql='select * from userinfo;'
rows=cursor.execute(sql) #执行sql语句,返回sql影响成功的行数rows,将结果放入一个集合,等待被查询 # cursor.scroll(3,mode='absolute') # 相对绝对位置移动
# cursor.scroll(3,mode='relative') # 相对当前位置移动
res1=cursor.fetchone()
res2=cursor.fetchone()
res3=cursor.fetchone()
res4=cursor.fetchmany(2)
res5=cursor.fetchall()
print(res1)
print(res2)
print(res3)
print(res4)
print(res5)
print('%s rows in set (0.00 sec)' %rows) conn.commit() #提交后才发现表中插入记录成功
cursor.close()
conn.close() '''
(1, 'root', '123456')
(2, 'root', '123456')
(3, 'root', '123456')
((4, 'root', '123456'), (5, 'root', '123456'))
((6, 'root', '123456'), (7, 'lhf', '12356'), (8, 'eee', '156'))
rows in set (0.00 sec)
'''

  5、获取插入的最后一条数据的自增ID

import pymysql
conn=pymysql.connect(host='localhost',user='root',password='',database='egon')
cursor=conn.cursor() sql='insert into userinfo(name,password) values("xxx","123");'
rows=cursor.execute(sql)
print(cursor.lastrowid) #在插入语句后查看 conn.commit() cursor.close()
conn.close()

三、视图、触发器、事务、存储过程、函数

一、视图

  1、介绍

  视图是一个虚拟表(非真实存在),其本质是【根据SQL语句获取动态的数据集,并为其命名】,用户使用时只需使用【名称】即可获取结果集,可以将该结果集当做表来使用。

  使用视图我们可以把查询过程中的临时表摘出来,用视图去实现,这样以后再想操作该临时表的数据时就无需重写复杂的sql了,直接去视图中查找即可,但视图有明显地效率问题,并且视图是存放在数据库中的,如果我们程序中使用的sql过分依赖数据库中的视图,即强耦合,那就意味着扩展sql极为不便,因此并不推荐使用

#两张有关系的表
mysql> select * from course;
+-----+--------+------------+
| cid | cname | teacher_id |
+-----+--------+------------+
| 1 | 生物 | 1 |
| 2 | 物理 | 2 |
| 3 | 体育 | 3 |
| 4 | 美术 | 2 |
+-----+--------+------------+
rows in set (0.00 sec) mysql> select * from teacher;
+-----+-----------------+
| tid | tname |
+-----+-----------------+
| 1 | 张磊老师 |
| 2 | 李平老师 |
| 3 | 刘海燕老师 |
| 4 | 朱云海老师 |
| 5 | 李杰老师 |
+-----+-----------------+
rows in set (0.00 sec) #查询李平老师教授的课程名
mysql> select cname from course where teacher_id = (select tid from teacher where tname='李平老师');
+--------+
| cname |
+--------+
| 物理 |
| 美术 |
+--------+
rows in set (0.00 sec) #子查询出临时表,作为teacher_id等判断依据
select tid from teacher where tname='李平老师' 临时表应用举例

  2、创建视图

#语法:CREATE VIEW 视图名称 AS  SQL语句
create view teacher_view as select tid from teacher where tname='李平老师'; #于是查询李平老师教授的课程名的sql可以改写为
mysql> select cname from course where teacher_id = (select tid from teacher_view);
+--------+
| cname |
+--------+
| 物理 |
| 美术 |
+--------+
2 rows in set (0.00 sec) #!!!注意注意注意:
#1. 使用视图以后就无需每次都重写子查询的sql,但是这么效率并不高,还不如我们写子查询的效率高 #2. 而且有一个致命的问题:视图是存放到数据库里的,如果我们程序中的sql过分依赖于数据库中存放的视图,那么意味着,一旦sql需要修改且涉及到视图的部分,则必须去数据库中进行修改,而通常在公司中数据库有专门的DBA负责,你要想完成修改,必须付出大量的沟通成本DBA可能才会帮你完成修改,极其地不方便

  2、使用视图

#修改视图,原始表也跟着改
mysql> select * from course;
+-----+--------+------------+
| cid | cname | teacher_id |
+-----+--------+------------+
| 1 | 生物 | 1 |
| 2 | 物理 | 2 |
| 3 | 体育 | 3 |
| 4 | 美术 | 2 |
+-----+--------+------------+
rows in set (0.00 sec) mysql> create view course_view as select * from course; #创建表course的视图
Query OK, 0 rows affected (0.52 sec) mysql> select * from course_view;
+-----+--------+------------+
| cid | cname | teacher_id |
+-----+--------+------------+
| 1 | 生物 | 1 |
| 2 | 物理 | 2 |
| 3 | 体育 | 3 |
| 4 | 美术 | 2 |
+-----+--------+------------+
rows in set (0.00 sec) mysql> update course_view set cname='xxx'; #更新视图中的数据
Query OK, 4 rows affected (0.04 sec)
Rows matched: 4 Changed: 4 Warnings: 0 mysql> insert into course_view values(5,'yyy',2); #往视图中插入数据
Query OK, 1 row affected (0.03 sec) mysql> select * from course; #发现原始表的记录也跟着修改了
+-----+-------+------------+
| cid | cname | teacher_id |
+-----+-------+------------+
| 1 | xxx | 1 |
| 2 | xxx | 2 |
| 3 | xxx | 3 |
| 4 | xxx | 2 |
| 5 | yyy | 2 |
+-----+-------+------------+
rows in set (0.00 sec)

 不应该修改视图中的记录,而且在涉及多个表的情况下是根本无法修改视图中的记录的,如下图

  3、修改视图

语法:ALTER VIEW 视图名称 AS SQL语句
mysql> alter view teacher_view as select * from course where cid>3;
Query OK, 0 rows affected (0.04 sec) mysql> select * from teacher_view;
+-----+-------+------------+
| cid | cname | teacher_id |
+-----+-------+------------+
| 4 | xxx | 2 |
| 5 | yyy | 2 |
+-----+-------+------------+
2 rows in set (0.00 sec)

  4、删除视图

语法:DROP VIEW 视图名称

DROP VIEW teacher_view

二、触发器

  使用触发器可以定制用户对表进行【增、删、改】操作时前后的行为,注意:没有查询

  1、创建触发器

# 插入前
CREATE TRIGGER tri_before_insert_tb1 BEFORE INSERT ON tb1 FOR EACH ROW
BEGIN
...
END # 插入后
CREATE TRIGGER tri_after_insert_tb1 AFTER INSERT ON tb1 FOR EACH ROW
BEGIN
...
END # 删除前
CREATE TRIGGER tri_before_delete_tb1 BEFORE DELETE ON tb1 FOR EACH ROW
BEGIN
...
END # 删除后
CREATE TRIGGER tri_after_delete_tb1 AFTER DELETE ON tb1 FOR EACH ROW
BEGIN
...
END # 更新前
CREATE TRIGGER tri_before_update_tb1 BEFORE UPDATE ON tb1 FOR EACH ROW
BEGIN
...
END # 更新后
CREATE TRIGGER tri_after_update_tb1 AFTER UPDATE ON tb1 FOR EACH ROW
BEGIN
...
END
#准备表
CREATE TABLE cmd (
id INT PRIMARY KEY auto_increment,
USER CHAR (32),
priv CHAR (10),
cmd CHAR (64),
sub_time datetime, #提交时间
success enum ('yes', 'no') #0代表执行失败
); CREATE TABLE errlog (
id INT PRIMARY KEY auto_increment,
err_cmd CHAR (64),
err_time datetime
); #创建触发器
delimiter //
CREATE TRIGGER tri_after_insert_cmd AFTER INSERT ON cmd FOR EACH ROW
BEGIN
IF NEW.success = 'no' THEN #等值判断只有一个等号
INSERT INTO errlog(err_cmd, err_time) VALUES(NEW.cmd, NEW.sub_time) ; #必须加分号
END IF ; #必须加分号
END//
delimiter ; #往表cmd中插入记录,触发触发器,根据IF的条件决定是否插入错误日志
INSERT INTO cmd (
USER,
priv,
cmd,
sub_time,
success
)
VALUES
('egon','','ls -l /etc',NOW(),'yes'),
('egon','','cat /etc/passwd',NOW(),'no'),
('egon','','useradd xxx',NOW(),'no'),
('egon','','ps aux',NOW(),'yes'); #查询错误日志,发现有两条
mysql> select * from errlog;
+----+-----------------+---------------------+
| id | err_cmd | err_time |
+----+-----------------+---------------------+
| 1 | cat /etc/passwd | 2017-09-14 22:18:48 |
| 2 | useradd xxx | 2017-09-14 22:18:48 |
+----+-----------------+---------------------+
rows in set (0.00 sec)

插入后触发触发器

  特别的:NEW表示即将插入的数据行,OLD表示即将删除的数据行。

  2、使用触发器

  触发器无法由用户直接调用,而知由于对表【增/删/改】操作被动引发的

  3、删除触发器

drop trigger tri_after_insert_cmd;

三、事务

  事务用于将某些操作的多个SQL作为原子性操作,一旦某一个出现错误,即可回滚到原来的状态,从而保证数据库数据完整性。

create table user(
id int primary key auto_increment,
name char(32),
balance int
); insert into user(name,balance)
values
('wsb',1000),
('egon',1000),
('ysb',1000); #原子操作
start transaction;
update user set balance=900 where name='wsb'; #买支付100元
update user set balance=1010 where name='egon'; #中介拿走10元
update user set balance=1090 where name='ysb'; #卖家拿到90元
commit; #出现异常,回滚到初始状态
start transaction;
update user set balance=900 where name='wsb'; #买支付100元
update user set balance=1010 where name='egon'; #中介拿走10元
uppdate user set balance=1090 where name='ysb'; #卖家拿到90元,出现异常没有拿到
rollback;
commit;
mysql> select * from user;
+----+------+---------+
| id | name | balance |
+----+------+---------+
| 1 | wsb | 1000 |
| 2 | egon | 1000 |
| 3 | ysb | 1000 |
+----+------+---------+
rows in set (0.00 sec)

四、存储过程

  1、介绍

  存储过程包含了一系列可执行的sql语句,存储过程存放于MySQL中,通过调用它的名字可以执行其内部的一堆sql

  使用存储过程的优点:

1. 用于替代程序写的SQL语句,实现程序与sql解耦
2. 基于网络传输,传别名的数据量小,而直接传sql数据量大

  使用存储过程的缺点:

. 程序员扩展功能不方便

  补充:程序与数据库结合使用的三种方式

#方式一:
MySQL:存储过程
程序:调用存储过程 #方式二:
MySQL:
程序:纯SQL语句 #方式三:
MySQL:
程序:类和对象,即ORM(本质还是纯SQL语句)

  2、创建简单存储过程(无参)

delimiter //
create procedure p1()
BEGIN
select * from blog;
INSERT into blog(name,sub_time) values("xxx",now());
END //
delimiter ; #在mysql中调用
call p1() #在python中基于pymysql调用
cursor.callproc('p1')
print(cursor.fetchall())

  3、创建存储过程(有参)

对于存储过程,可以接收参数,其参数有三类:

#in          仅用于传入参数用
#out 仅用于返回值用
#inout 既可以传入又可以当作返回值
delimiter //
create procedure p2(
in n1 int,
in n2 int
)
BEGIN select * from blog where id > n1;
END //
delimiter ; #在mysql中调用
call p2(3,2) #在python中基于pymysql调用
cursor.callproc('p2',(3,2))
print(cursor.fetchall())

in:传入参数

delimiter //
create procedure p3(
in n1 int,
out res int
)
BEGIN
select * from blog where id > n1;
set res = 1;
END //
delimiter ; #在mysql中调用
set @res=0; #0代表假(执行失败),1代表真(执行成功)
call p3(3,@res);
select @res; #在python中基于pymysql调用
cursor.callproc('p3',(3,0)) #0相当于set @res=0
print(cursor.fetchall()) #查询select的查询结果 cursor.execute('select @_p3_0,@_p3_1;') #@p3_0代表第一个参数,@p3_1代表第二个参数,即返回值
print(cursor.fetchall())

out:返回值

inout:既可以传入又可以返回
#介绍
delimiter //
create procedure p4(
out status int
)
BEGIN
1. 声明如果出现异常则执行{
set status = 1;
rollback;
} 开始事务
-- 由秦兵账户减去100
-- 方少伟账户加90
-- 张根账户加10
commit;
结束 set status = 2; END //
delimiter ; #实现
delimiter //
create PROCEDURE p5(
OUT p_return_code tinyint
)
BEGIN
DECLARE exit handler for sqlexception
BEGIN
-- ERROR
set p_return_code = 1;
rollback;
END; DECLARE exit handler for sqlwarning
BEGIN
-- WARNING
set p_return_code = 2;
rollback;
END; START TRANSACTION;
DELETE from tb1; #执行失败
insert into blog(name,sub_time) values('yyy',now());
COMMIT; -- SUCCESS
set p_return_code = 0; #0代表执行成功 END //
delimiter ; #在mysql中调用存储过程
set @res=123;
call p5(@res);
select @res; #在python中基于pymysql调用存储过程
cursor.callproc('p5',(123,))
print(cursor.fetchall()) #查询select的查询结果 cursor.execute('select @_p5_0;')
print(cursor.fetchall())

事务

  4、执行存储过程

-- 无参数
call proc_name() -- 有参数,全in
call proc_name(1,2) -- 有参数,有in,out,inout
set @t1=0;
set @t2=3;
call proc_name(1,2,@t1,@t2)
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='', db='t1')
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
# 执行存储过程
cursor.callproc('p1', args=(1, 22, 3, 4))
# 获取执行完存储的参数
cursor.execute("select @_p1_0,@_p1_1,@_p1_2,@_p1_3")
result = cursor.fetchall() conn.commit()
cursor.close()
conn.close() print(result)

在python中基于pymysql执行存储过程

  5、删除存储过程

drop procedure proc_name;

五、函数

  MySQL中提供了许多内置函数,例如:

CHAR_LENGTH(str)
返回值为字符串str 的长度,长度的单位为字符。一个多字节字符算作一个单字符。
对于一个包含五个二字节字符集, LENGTH()返回值为 10, 而CHAR_LENGTH()的返回值为5。 CONCAT(str1,str2,...)
字符串拼接
如有任何一个参数为NULL ,则返回值为 NULL。
CONCAT_WS(separator,str1,str2,...)
字符串拼接(自定义连接符)
CONCAT_WS()不会忽略任何空字符串。 (然而会忽略所有的 NULL)。 CONV(N,from_base,to_base)
进制转换
例如:
SELECT CONV('a',16,2); 表示将 a 由16进制转换为2进制字符串表示 FORMAT(X,D)
将数字X 的格式写为'#,###,###.##',以四舍五入的方式保留小数点后 D 位, 并将结果以字符串的形式返回。若 D 为 0, 则返回结果不带有小数点,或不含小数部分。
例如:
SELECT FORMAT(12332.1,4); 结果为: '12,332.1000'
INSERT(str,pos,len,newstr)
在str的指定位置插入字符串
pos:要替换位置其实位置
len:替换的长度
newstr:新字符串
特别的:
如果pos超过原字符串长度,则返回原字符串
如果len超过原字符串长度,则由新字符串完全替换
INSTR(str,substr)
返回字符串 str 中子字符串的第一个出现位置。 LEFT(str,len)
返回字符串str 从开始的len位置的子序列字符。 LOWER(str)
变小写 UPPER(str)
变大写 LTRIM(str)
返回字符串 str ,其引导空格字符被删除。
RTRIM(str)
返回字符串 str ,结尾空格字符被删去。
SUBSTRING(str,pos,len)
获取字符串子序列 LOCATE(substr,str,pos)
获取子序列索引位置 REPEAT(str,count)
返回一个由重复的字符串str 组成的字符串,字符串str的数目等于count 。
若 count <= 0,则返回一个空字符串。
若str 或 count 为 NULL,则返回 NULL 。
REPLACE(str,from_str,to_str)
返回字符串str 以及所有被字符串to_str替代的字符串from_str 。
REVERSE(str)
返回字符串 str ,顺序和字符顺序相反。
RIGHT(str,len)
从字符串str 开始,返回从后边开始len个字符组成的子序列 SPACE(N)
返回一个由N空格组成的字符串。 SUBSTRING(str,pos) , SUBSTRING(str FROM pos) SUBSTRING(str,pos,len) , SUBSTRING(str FROM pos FOR len)
不带有len 参数的格式从字符串str返回一个子字符串,起始于位置 pos。带有len参数的格式从字符串str返回一个长度同len字符相同的子字符串,起始于位置 pos。 使用 FROM的格式为标准 SQL 语法。也可能对pos使用一个负值。假若这样,则子字符串的位置起始于字符串结尾的pos 字符,而不是字符串的开头位置。在以下格式的函数中可以对pos 使用一个负值。 mysql> SELECT SUBSTRING('Quadratically',5);
-> 'ratically' mysql> SELECT SUBSTRING('foobarbar' FROM 4);
-> 'barbar' mysql> SELECT SUBSTRING('Quadratically',5,6);
-> 'ratica' mysql> SELECT SUBSTRING('Sakila', -3);
-> 'ila' mysql> SELECT SUBSTRING('Sakila', -5, 3);
-> 'aki' mysql> SELECT SUBSTRING('Sakila' FROM -4 FOR 2);
-> 'ki' TRIM([{BOTH | LEADING | TRAILING} [remstr] FROM] str) TRIM(remstr FROM] str)
返回字符串 str , 其中所有remstr 前缀和/或后缀都已被删除。若分类符BOTH、LEADIN或TRAILING中没有一个是给定的,则假设为BOTH 。 remstr 为可选项,在未指定情况下,可删除空格。 mysql> SELECT TRIM(' bar ');
-> 'bar' mysql> SELECT TRIM(LEADING 'x' FROM 'xxxbarxxx');
-> 'barxxx' mysql> SELECT TRIM(BOTH 'x' FROM 'xxxbarxxx');
-> 'bar' mysql> SELECT TRIM(TRAILING 'xyz' FROM 'barxxyz');
-> 'barx'

部分内置函数

#1 基本使用
mysql> SELECT DATE_FORMAT('2009-10-04 22:23:00', '%W %M %Y');
-> 'Sunday October 2009'
mysql> SELECT DATE_FORMAT('2007-10-04 22:23:00', '%H:%i:%s');
-> '22:23:00'
mysql> SELECT DATE_FORMAT('1900-10-04 22:23:00',
-> '%D %y %a %d %m %b %j');
-> '4th 00 Thu 04 10 Oct 277'
mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00',
-> '%H %k %I %r %T %S %w');
-> '22 22 10 10:23:00 PM 22:23:00 00 6'
mysql> SELECT DATE_FORMAT('1999-01-01', '%X %V');
-> '1998 52'
mysql> SELECT DATE_FORMAT('2006-06-00', '%d');
-> '' #2 准备表和记录
CREATE TABLE blog (
id INT PRIMARY KEY auto_increment,
NAME CHAR (32),
sub_time datetime
); INSERT INTO blog (NAME, sub_time)
VALUES
('第1篇','2015-03-01 11:31:21'),
('第2篇','2015-03-11 16:31:21'),
('第3篇','2016-07-01 10:21:31'),
('第4篇','2016-07-22 09:23:21'),
('第5篇','2016-07-23 10:11:11'),
('第6篇','2016-07-25 11:21:31'),
('第7篇','2017-03-01 15:33:21'),
('第8篇','2017-03-01 17:32:21'),
('第9篇','2017-03-01 18:31:21'); #3. 提取sub_time字段的值,按照格式后的结果即"年月"来分组
SELECT DATE_FORMAT(sub_time,'%Y-%m'),COUNT(1) FROM blog GROUP BY DATE_FORMAT(sub_time,'%Y-%m'); #结果
+-------------------------------+----------+
| DATE_FORMAT(sub_time,'%Y-%m') | COUNT(1) |
+-------------------------------+----------+
| 2015-03 | 2 |
| 2016-07 | 4 |
| 2017-03 | 3 |
+-------------------------------+----------+
rows in set (0.00 sec)

需要掌握函数:date_format

  1、自定义函数

!!!注意!!!
#函数中不要写sql语句(否则会报错),函数仅仅只是一个功能,是一个在sql中被应用的功能
#若要想在begin...end...中写sql,请用存储过程
delimiter //
create function f1(
i1 int,
i2 int)
returns int
BEGIN
declare num int;
set num = i1 + i2;
return(num);
END //
delimiter ;
delimiter //
create function f5(
i int
)
returns int
begin
declare res int default 0;
if i = 10 then
set res=100;
elseif i = 20 then
set res=200;
elseif i = 30 then
set res=300;
else
set res=400;
end if;
return res;
end //
delimiter ;

  2、删除函数

drop function func_name;

  3、执行函数

# 获取返回值
select UPPER('egon') into @res;
SELECT @res; # 在查询中使用
select f1(11,nid) ,name from tb2;

六、流程控制

  1、条件语句

delimiter //
CREATE PROCEDURE proc_if ()
BEGIN declare i int default 0;
if i = 1 THEN
SELECT 1;
ELSEIF i = 2 THEN
SELECT 2;
ELSE
SELECT 7;
END IF; END //
delimiter ;

if条件语句

  2、循环语句

delimiter //
CREATE PROCEDURE proc_while ()
BEGIN DECLARE num INT ;
SET num = 0 ;
WHILE num < 10 DO
SELECT
num ;
SET num = num + 1 ;
END WHILE ; END //

while循环

delimiter //
CREATE PROCEDURE proc_repeat ()
BEGIN DECLARE i INT ;
SET i = 0 ;
repeat
select i;
set i = i + 1;
until i >= 5
end repeat; END //
delimiter ;

repeat循环

BEGIN

    declare i int default 0;
loop_label: loop set i=i+1;
if i<8 then
iterate loop_label;
end if;
if i>=10 then
leave loop_label;
end if;
select i;
end loop loop_label; END

loop

四、ORM框架SQLAlchemy

  http://www.cnblogs.com/linhaifeng/articles/7560153.html

MySQL数据库之part2的更多相关文章

  1. nodejs进阶(6)—连接MySQL数据库

    1. 建库连库 连接MySQL数据库需要安装支持 npm install mysql 我们需要提前安装按mysql sever端 建一个数据库mydb1 mysql> CREATE DATABA ...

  2. 当忘记mysql数据库密码时如何进行修改

    因为长时间没有使用数据库了,或者把密码改完之后就忘了数据库密码,不能正常进入数据库,也无法修改密码,有一个简单的常用修改密码方式: 1.首先找到和打开mysql.exe和mysqld.exe所在的文件 ...

  3. MySQL数据库和InnoDB存储引擎文件

    参数文件 当MySQL示例启动时,数据库会先去读一个配置参数文件,用来寻找数据库的各种文件所在位置以及指定某些初始化参数,这些参数通常定义了某种内存结构有多大等.在默认情况下,MySQL实例会按照一定 ...

  4. 一起学微软Power BI系列-使用技巧(1)连接Oracle与Mysql数据库

    说起Oracle数据库,以前没用过Oracle不知道,但是这1年用Oracle后,发现真的是想狂吐槽,特别是那个.NET驱动和链接字符串,特别奇葩.总归是和其他数据库不一样,标新立异,不知道为何.另外 ...

  5. CentOS下mysql数据库常用命令总结

    mysql数据库使用总结 本文主要记录一些mysql日常使用的命令,供以后查询. 1.更改root密码 mysqladmin -uroot password 'yourpassword' 2.远程登陆 ...

  6. [原创]java使用JDBC向MySQL数据库批次插入10W条数据测试效率

    使用JDBC连接MySQL数据库进行数据插入的时候,特别是大批量数据连续插入(100000),如何提高效率呢?在JDBC编程接口中Statement 有两个方法特别值得注意:通过使用addBatch( ...

  7. mysql数据库主从同步

    环境: Mater:   CentOS7.1  5.5.52-MariaDB  192.168.108.133 Slave:   CentOS7.1  5.5.52-MariaDB  192.168. ...

  8. PDO连接mysql数据库

    1.PDO简介 PDO(PHP Data Object) 是PHP 5 中加入的东西,是PHP 5新加入的一个重大功能,因为在PHP 5以前的php4/php3都是一堆的数据库扩展来跟各个数据库的连接 ...

  9. mysql数据库开发常见问题及优化

    mysql 数据库是被广泛应用的关系型数据库,其体积小.支持多处理器.开源并免费的特性使其在 Internet 中小型网站中的使用率尤其高.在使用 mysql 的过程中不规范的 SQL 编写.非最优的 ...

随机推荐

  1. redis-sentinel的理解实践

    一.前言 组内现在用的是redis 的sentinel. 本着实践的原则,对sentinel的几台服务器进行了网络或者抓包方面的实践. 一共三台redis服务器, 10.10.20.6, 10.10. ...

  2. 一名前端Web架构师的成长之路(转载)

    本人也是coding很多年,虽然很失败,但也总算有点失败的心得,不过我在中国,大多数程序员都是像我一样,在一直走着弯路.如果想成为一个架构师,就必须走正确的路,否则离目标越来越远,正在辛苦工作的程序员 ...

  3. Python基础爬虫

    搭建环境: win10,Python3.6,pycharm,未设虚拟环境 之前写的爬虫并没有架构的思想,且不具备面向对象的特征,现在写一个基础爬虫架构,爬取百度百科,首先介绍一下基础爬虫框架的五大模块 ...

  4. Linux内核编译指定输出目录

    # kbuild supports saving output files in a separate directory.# To locate output files in a separate ...

  5. API(三)之Class-based Views

    使用基于类的视图重写API 我们首先将根视图重写为基于类的视图.所有这一切都涉及到重构views.py. from snippets.models import Snippet from snippe ...

  6. HTML5:基本语句

    HTML5:超文本标记语言(HTML)第五次重大修改 我用的sulime编辑器,用Package contorl后安装emmet插件来编辑HTML代码,以下为sublime操作小技巧 ctrl+s 保 ...

  7. ArcEngine利用索引获取图层

    近期在做GP工具相关的功能,需要获取到图层并用ComboBox列出,比如图层更新: 开始用了根据图层名获取图层,但这样有个弊端,遇到不同文件夹的相同图层名称的图层gg了.本来想利用图层名+路径来区分, ...

  8. [hyperscan] hyperscan 1到1.5 --!!

    [hyperscan][pkg-config] hyperscan 从0到1路线图 接续前文,继续深入理解: 概述: 1.  自动机理论,是hyperscan的理论基础. https://zh.wik ...

  9. [development][lockless][dpdk] 无锁队列

    dpdk: http://dpdk.org/doc/guides/prog_guide/ring_lib.html#ring-library linux: https://lwn.net/Articl ...

  10. 模拟器运行报错:ld: symbol(s) not found for architecture x86_64

    模拟器运行报错: 报错信息如下: Undefined symbols for architecture x86_64: "_x264_encoder_open_142", refe ...