回归评价指标MSE、RMSE、MAE、R-Squared
分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE、R-Squared。
MSE和MAE适用于误差相对明显的时候,大的误差也有比较高的权重,RMSE则是针对误差不是很明显的时候;MAE是一个线性的指标,所有个体差异在平均值上均等加权,所以它更加凸显出异常值,相比MSE;
RMSLE: 主要针对数据集中有一个特别大的异常值,这种情况下,data会被skew,RMSE会被明显拉大,这时候就需要先对数据log下,再求RMSE,这个过程就是RMSLE。对低估值(under-predicted)的判罚明显多于估值过高(over-predicted)的情况(RMSE则相反)
1、MSE(Mean Squared Error)均方误差
用 真实值-预测值 然后平方之后求和平均。线性回归用MSE作为损失函数
y_preditc=reg.predict(x_test) #reg是训练好的模型
mse_test=np.sum((y_preditc-y_test)**2)/len(y_test) #跟数学公式一样的
2、RMSE(Root Mean Squared Error)均方根误差
这不就是MSE开个根号么。有意义么?其实实质是一样的。只不过用于数据更好的描述。
例如:要做房价预测,每平方是万元(真贵),我们预测结果也是万元。那么差值的平方单位应该是 千万级别的。那我们不太好描述自己做的模型效果。怎么说呢?我们的模型误差是 多少千万?。。。。。。于是干脆就开个根号就好了。我们误差的结果就跟我们数据是一个级别的,在描述模型的时候就说,我们模型的误差是多少万元。
rmse_test=mse_test ** 0.5
3、MAE (Mean absolute Error)平均绝对误差
mae_test=np.sum(np.absolute(y_preditc-y_test))/len(y_test)
4、R-Squared
对于回归类算法而言,只探索数据预测是否准确是不足够的。除了数据本身的数值大小之外,我们还希望我们的模型能够捕捉到数据的”规律“,比如数据的分布规律,单调性等等,而是否捕获了这些信息并无法使用MSE来衡量。
来看这张图,其中红色线是我们的真实标签,而蓝色线是我们的拟合模型。这是一种比较极端,但的确可能发生的 情况。这张图像上,前半部分的拟合非常成功,看上去我们的真实标签和我们的预测结果几乎重合,但后半部分的 拟合却非常糟糕,模型向着与真实标签完全相反的方向去了。对于这样的一个拟合模型,如果我们使用MSE来对它 进行判断,它的MSE会很小,因为大部分样本其实都被完美拟合了,少数样本的真实值和预测值的巨大差异在被均 分到每个样本上之后,MSE就会很小。但这样的拟合结果必然不是一个好结果,因为一旦我的新样本是处于拟合曲 线的后半段的,我的预测结果必然会有巨大的偏差,而这不是我们希望看到的。所以,我们希望找到新的指标,除 了判断预测的数值是否正确之外,还能够判断我们的模型是否拟合了足够多的,数值之外的信息。
方差的本质是任意一个值和样本均值的差异,差异越大,这些值所带的信息越多。在R2和EVS中,分子是真实值和预测值之差的差值,也就是我们的模型没有捕获到的信息总量,分母是真实标签所带的信息量,所以两者都衡量 1 - 我们的模型没有捕获到的信息量占真实标签中所带的信息量的比例,所以,两者都是越接近1越好
化简上面的公式 ,分子分母同时除以m,那么分子就变成了我们的均方误差MSE,下面分母就变成了方差
在R2中,分子是真实值和预测值之差的差值,也就是我们的模型没有捕获到的信息总量,分母是真实标签所带的信息量,所以两者都衡量 1 - 我们的模型没有捕获到的信息量占真实标签中所带的信息量的比例,所以,两者都是越接近1越好。
如果结果是 0,说明模型拟合效果很差;
如果结果是 1,说明模型无错误
三种调用方式:
- 第一种是直接从metrics中导入r2_score,输入预测值和真实值后打分。
- 第二种是直接从线性回归LinearRegression的接口score来进行调用。
- 第三种是在交叉验证中,输入"r2"来调用。EVS有两 种调用方法,可以从metrics中导入,也可以在交叉验证中输入”explained_variance“来调用。
5.RMSLE(Root Mean Squared Logarithmic Error)
假如真实值为1000,若果预测值是600,那么RMSE=400, RMSLE=0.510
假如真实值为1000,若预测结果为1400, 那么RMSE=400, RMSLE=0.336
可以看出来在均方根误差相同的情况下,预测值比真实值小这种情况的错误比较大,即对于预测值小这种情况惩罚较大。
当数据当中有少量的值和真实值差值较大的时候,使用log函数能够减少这些值对于整体误差的影响。
假设下图:图的最低点是真实值:3,从图来看,越偏离真实值,误差越大。但偏左边和偏右边误差增长幅度不一样,所以对于skew数据有效。
Scikit-learn中的各种衡量指标
from sklearn.metrics import mean_squared_error #均方误差
from sklearn.metrics import mean_absolute_error #平方绝对误差
from sklearn.metrics import r2_score#R square
#调用
mean_squared_error(y_test,y_predict)
mean_absolute_error(y_test,y_predict)
r2_score(y_test,y_predict)
参考文献:
【1】回归评价指标MSE、RMSE、MAE、R-Squared
【2】回归模型的几个评价指标
【5】sklearn 3.3. 模型评估:对模型的预测进行量化考核
回归评价指标MSE、RMSE、MAE、R-Squared的更多相关文章
- 衡量线性回归法的指标MSE, RMSE,MAE和R Square
衡量线性回归法的指标:MSE, RMSE和MAE 举个栗子: 对于简单线性回归,目标是找到a,b 使得尽可能小 其实相当于是对训练数据集而言的,即 当我们找到a,b后,对于测试数据集而言 ,理所当然, ...
- 机器学习:衡量线性回归法的指标(MSE、RMSE、MAE、R Squared)
一.MSE.RMSE.MAE 思路:测试数据集中的点,距离模型的平均距离越小,该模型越精确 # 注:使用平均距离,而不是所有测试样本的距离和,因为距离和受样本数量的影响 1)公式: MSE:均方误差 ...
- 【笔记】衡量线性回归法的指标 MSE,RMS,MAE以及评价回归算法 R Square
衡量线性回归法的指标 MSE,RMS,MAE以及评价回归算法 R Square 衡量线性回归法的指标 对于分类问题来说,我们将原始数据分成了训练数据集和测试数据集两部分,我们使用训练数据集得到模型以后 ...
- 线性回归中常见的一些统计学术语(RSE RSS TSS ESS MSE RMSE R2 Pearson's r)
TSS: Total Sum of Squares(总离差平方和) --- 因变量的方差 RSS: Residual Sum of Squares (残差平方和) --- 由误差导致的真实值和估计值 ...
- 机器学习|线性回归三大评价指标实现『MAE, MSE, MAPE』(Python语言描述)
原文地址 ?传送门 对于回归预测结果,通常会有平均绝对误差.平均绝对百分比误差.均方误差等多个指标进行评价.这里,我们先介绍最常用的3个: 平均绝对误差(MAE) 就是绝对误差的平均值,它的计算公式如 ...
- 可决系数R^2和MSE,MAE,SMSE
波士顿房价预测 首先这个问题非常好其实要完整的回答这个问题很有难度,我也没有找到一个完整叙述这个东西的资料,所以下面主要是结合我自己的理解和一些资料谈一下r^2,mean square error 和 ...
- r squared
multiple r squared adjusted r squared http://web.maths.unsw.edu.au/~adelle/Garvan/Assays/GoodnessOfF ...
- SSE,MSE,RMSE,R-square指标讲解
SSE(和方差.误差平方和):The sum of squares due to errorMSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean ...
- SSE,MSE,RMSE,R-square 指标讲解
SSE(和方差.误差平方和):The sum of squares due to error MSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean ...
随机推荐
- iOS-Core Animation: 变换
仿射变换 用 CGPoint 的每一列和 CGAffineTransform 矩阵的每一行对应元素相乘再求 和,就形成了一个新的 CGPoint 类型的结果.要解释一下图中显示的灰色元素, 为了能让矩 ...
- class in Bad version
异常信息:class in Bad version:jdk版本不对
- 文本分类学习 (八)SVM 入门之线性分类器
SVM 和线性分类器是分不开的.因为SVM的核心:高维空间中,在线性可分(如果线性不可分那么就使用核函数转换为更高维从而变的线性可分)的数据集中寻找一个最优的超平面将数据集分隔开来. 所以要理解SVM ...
- 洛谷 P1208混合牛奶【贪心】
题目描述 由于乳制品产业利润很低,所以降低原材料(牛奶)价格就变得十分重要.帮助Marry乳业找到最优的牛奶采购方案. Marry乳业从一些奶农手中采购牛奶,并且每一位奶农为乳制品加工企业提供的价格是 ...
- F#周报2018年第50期
新闻 Bolero: 用于WebAssembly的F#工具 Ionide-fsharp安装数量超过10万 WPF的Xaml.Behaviors类库开源 Visual Studio 2019预览版 .N ...
- Hbase建表时遇到的问题This could be a sign that the server has too many connections
Hbase创建表时遇到以下错误: ERROR: org.apache.hadoop.hbase.ZooKeeperConnectionException: HBase is able to conne ...
- iOS RSA非对称加密测试流程
非对称加密需要两把钥匙:公钥和秘钥. 单向加密:一般情况下服务器会持有秘钥和公钥,那该怎么使用呢?以注册场景为例,最初服务器持有公钥和密钥. 用户注册时不是直接发送用户名,密码,验证码等明文信息给服务 ...
- linux命令瞎记录find xargs
1.创建多个文件 touch test{0..100}.txt 2.重定向 “>>” 追加重定向,追加内容,到文件的尾部 “>” 重定向,清除原文件里面所有内容,然后把内容追加到文件 ...
- 如何在windows下安装Python(Python入门教程)
第一步:下载Python安装包 在Python的官网 www.python.org 中找到最新版本的Python安装包,点击进行下载,请注意,当你的电脑是32位的机器,请选择32位的安装包,如果是64 ...
- input="file" 浏览时只显示指定excel文件,筛选特定文件类型
<p>显示 .xls, .xlsx, .csv 文件...</p> <input type="file" accept=".csv, app ...