题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4660

想到一个点可以用它与圆的两个切点表示。并想到可以把切点极角排序,那么就变成环上的一些区间之间的问题。

发现了一个区间和另一个区间可以共存,当且仅当它们相交。不知怎的没看到题面的 “直线” ,以为包含也可以。

所有区间都两两相交,考虑枚举一个点作为所有区间都经过的点。但发现因为是环,可以有区间是首部相交一些区间、尾部相交一些区间的。

然后就不会了。

其实考虑没有那种首部相交一些、尾部相交一些的情况,除了枚举一个所有区间都经过的点,还可以考虑用 LIS 做。

就是枚举一个区间,把 “左端点在自己区间里,与自己是相交关系” 的区间拿出来,按左端点排序,对右端点求 LIS 。

有那种情况的话,考虑把那种区间首尾交换一下,就可以像原来那样做了!!!

求切点极角,令 \( len * cos( s ) = R , len * cos( g ) = x \) ,即 s 是 “该点到原点连线” 与 “切点到原点连线” 的夹角, g 是 “该点到原点连线” 与 “x轴” 的夹角,那么两个切点的极角就是 s-g 和 s+g 。

求 LIS 的时候,把各种点的值改成与当前区间左端点的距离就很方便了。

注意是 “直线” 所以是可以相交但不能包含。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define db double
using namespace std;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return fx?ret:-ret;
}
int Mx(int a,int b){return a>b?a:b;}
const int N=; const db pi2=*acos(-);
int n,R,tot,ans;db f[N];
struct Node{
db l,r;
Node(db l=,db r=):l(l),r(r) {}
bool operator< (const Node &b)const
{return l<b.l;}
}a[N],b[N];
db Dis(int x,int y){return sqrt((db)x*x+(db)y*y);}
bool chk(db x,db l,db r)
{ if(l<r)return x>l&&x<r; else return x>l||x<r;}
db cal(db x,db y)
{ if(x<y)return y-x; else return pi2-(x-y);}
void get(int cr)
{
sort(b+,b+tot+); int cd=;
for(int i=;i<=tot;i++)
{
if(b[i].r>f[cd])f[++cd]=b[i].r;
int l=,r=cd,p=;
while(l<=r)
{
int mid=l+r>>;
if(f[mid]>=b[i].r)p=mid,r=mid-;
else l=mid+;
}
f[p]=b[i].r;
}
ans=Mx(ans,cd+);//+1 for i
}
int main()
{
n=rdn();R=rdn();
for(int i=;i<=n;i++)
{
int x=rdn(), y=rdn(); db len=Dis(x,y);
db s=acos(R/len), g=acos(x/len); if(y<)g=pi2-g;
a[i].l=g-s; a[i].r=g+s;
if(a[i].l<)a[i].l+=pi2; if(a[i].r>pi2)a[i].r-=pi2;
}
for(int i=;i<=n;i++)
{
tot=;
for(int j=;j<=n;j++)
{
if(j==i)continue;
if(chk(a[j].l,a[i].l,a[i].r)&&!chk(a[j].r,a[i].l,a[i].r))
b[++tot]=Node(cal(a[i].l,a[j].l),cal(a[i].l,a[j].r));
else if(chk(a[j].r,a[i].l,a[i].r)&&!chk(a[j].l,a[i].l,a[i].r))
b[++tot]=Node(cal(a[i].l,a[j].r),cal(a[i].l,a[j].l));
}
get(i);
}
printf("%d\n",ans);
return ;
}

bzoj 4660 Crazy Rabbit——LIS解决“相交”限制的思想的更多相关文章

  1. 【BZOJ4660】Crazy Rabbit 结论+DP

    [BZOJ4660]Crazy Rabbit Description 兔子们决定在自己的城堡里安排一些士兵进行防守.给出 n 个点的坐标,和城堡里一个圆心在原点的圆形的障碍,兔子们希望从中选出 k 个 ...

  2. 三倍经验——bzoj3663、4660、4206 Crazy Rabbit/最大团

    题目描述: 3663 4660 4206 题解: 第一眼:不成立的互相连边,然后用网络流求解无向图最小点覆盖! 好吧我不会. 正解: 每个点对应圆上的一段圆弧,长这样: 设对应圆弧$(l,r)$. 若 ...

  3. P3897 [湖南集训]Crazy Rabbit

    \(\color{#0066ff}{ 题目描述 }\) 兔子们决定在自己的城堡里安排一些士兵进行防守. 给出 n 个点的坐标,和城堡里一个圆心在原点的圆形的障碍,兔子们希望从中选出 k 个兔子,使得它 ...

  4. BZOJ 1046 上升序列(LIS变形)

    要保证长度为L的序列下标字典序最小,当然要尽量选前面的数. 如何判断前面的数是否满足条件?,只需要知道这个数开头的递增序列的最长长度是多少,如果不小于L,那么必然可以加入这个数.还需判断一下它是否大于 ...

  5. BZOJ - 3757 树上莫队解决离线路径问题 & 学习心得

    题意:给你一棵树,求u,v最短路径的XXX(本题是统计权值种类) 今天课上摸鱼学了一种有意思的处理路径方式(其实是链式块状树翻车了看别的),据说实际运行跑的比XX记者还快 大概就是像序列莫队那样 首先 ...

  6. BZOJ 2127: happiness(最小割解决集合划分)

    Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 2350  Solved: 1138[Submit][Status][Discuss] Descript ...

  7. 用DFS 解决全排列问题的思想详解

    首先考虑一道奥数题目: □□□ + □□□ = □□□,要将数字1~9分别填入9个□中,使得等式成立.例如173+286 = 459.请输出所有合理的组合的个数. 我们或许可以枚举每一位上所有的数,然 ...

  8. 解决分布式事务基本思想Base和CPA理论、最终一致性|刚性事务、柔性事务

    在学习解决分布式事务基本思路之前,大家要熟悉一些基本解决分布式事务概念名词比如:CAP与Base理论.柔性事务与刚性事务.理解最终一致性思想,JTA+XA.两阶段与三阶段提交等. 如何保证强一致性呢? ...

  9. bzoj 4765: 普通计算姬 主席树+替罪羊树思想

    题目大意: 给定一棵\(n\)个节点的带权树有根树,设\(sum_p\)表示以点\(p\)为根的这棵子树中所有节点的权 计算姬支持下列两种操作: 给定两个整数\(u,v\),修改点\(u\)的权值为\ ...

随机推荐

  1. 20165326 java实验一

    <Java程序设计>Java开发环境的熟悉 实验报告 课程:Java程序设计 班级:1653班 姓名:陈卓 学号:20165326 指导教师:娄嘉鹏 实验日期:2018年4月2日 实验时间 ...

  2. vnode的挂载和更新流程 -- 简介.

    来源 vnode原理 diff图解 <div id="app"> {{someVar}} </div> <script type="text ...

  3. scrapy框架发送post请求

    注:scrapy框架默认发送get请求 1.想要发送post请求,那么推荐使用‘scrapy.FormRequest’方法.可以方便的制定表单数据.request = scrapy.FormReque ...

  4. linux 编译链接问题

    -rpath和-rpath-link 假设有3个文件,在同一目录下,有这样的依赖关系 test->liba.so->libd.so 如果编译test的时候这样写 gcc test.c –l ...

  5. A + B 问题

    要求: 问题:给出两个整数a和b, 求他们的和, 但不能使用 + 等数学运算符. 示例: 如果 a=1 并且 b=2,返回3 代码: package main import ( "fmt&q ...

  6. 在PHP5.4上使用Google翻译的API报错

    /********************************************************************** * 在PHP5.4上使用Google翻译的API报错 * ...

  7. 深入理解Java中的多态

    一.什么是多态? 多态指同一个实体同时具有多种形式.它是面向对象程序设计(OOP)的一个重要特征.如果一个语言只支持类而不支持多态,只能说明它是基于对象的,而不是面向对象的. 二.多态是如何实现的? ...

  8. Http put与post区别

    转载: 有的观点认为,应该用POST来创建一个资源,用PUT来更新一个资源:有的观点认为,应该用PUT来创建一个资源,用POST来更新一个资源:还有的观点认为可以用PUT和POST中任何一个来做创建或 ...

  9. [LeetCode&Python] Problem 788. Rotated Digits

    X is a good number if after rotating each digit individually by 180 degrees, we get a valid number t ...

  10. Atom编辑神器

    最近喜欢上了Atom编辑神器,安装就不说了,重点讲配置. 一:软件配置 1.先将欢迎界面去掉,每次打开Atom的时候都会出现,实在是很烦人. 就在欢迎界面里面有个复选框,去掉选中就可以了. 2.让At ...