基于binlog来分析mysql的行记录修改情况
https://www.cnblogs.com/xinysu/archive/2017/05/26/6908722.html
import pymysql
from pymysql.cursors import DictCursor
import re
import os
import sys
import datetime
import time
import logging
import importlib
importlib.reload(logging)
logging.basicConfig(level=logging.DEBUG,format='%(asctime)s %(levelname)s %(message)s ')
usage=''' usage: python [script's path] [option]
ALL options need to assign:
-h : host, the database host,which database will store the results after analysis
-u : user, the db user
-p : password, the db user's password
-P : port, the db port
-f : file path, the binlog file
-tr : table name for record , the table name to store the row record
-tt : table name for transaction, the table name to store transactions
Example: python queryanalyse.py -h=127.0.0.1 -P=3310 -u=root -p=password -f=/tmp/stock_binlog.log -tt=flashback.tbtran -tr=flashback.tbrow
'''
class queryanalyse:
def __init__(self):
#初始化
self.host=''
self.user=''
self.password=''
self.port='3306'
self.fpath=''
self.tbrow=''
self.tbtran=''
self._get_db()
logging.info('assign values to parameters is done:host={},user={},password=***,port={},fpath={},tb_for_record={},tb_for_tran={}'.format(self.host,self.user,self.port,self.fpath,self.tbrow,self.tbtran))
self.mysqlconn = pymysql.connect(host=self.host, user=self.user, password=self.password, port=self.port,charset='utf8')
self.cur = self.mysqlconn.cursor(cursor=DictCursor)
logging.info('MySQL which userd to store binlog event connection is ok')
self.begin_time=''
self.end_time=''
self.db_name=''
self.tb_name=''
def _get_db(self):
#解析用户输入的选项参数值,这里对password的处理是明文输入,可以自行处理成是input格式,
#由于可以拷贝binlog文件到非线上环境分析,所以password这块,没有特殊处理
logging.info('begin to assign values to parameters')
if len(sys.argv) == 1:
print(usage)
sys.exit(1)
elif sys.argv[1] == '--help':
print(usage)
sys.exit()
elif len(sys.argv) > 2:
for i in sys.argv[1:]:
_argv = i.split('=')
if _argv[0] == '-h':
self.host = _argv[1]
elif _argv[0] == '-u':
self.user = _argv[1]
elif _argv[0] == '-P':
self.port = int(_argv[1])
elif _argv[0] == '-f':
self.fpath = _argv[1]
elif _argv[0] == '-tr':
self.tbrow = _argv[1]
elif _argv[0] == '-tt':
self.tbtran = _argv[1]
elif _argv[0] == '-p':
self.password = _argv[1]
else:
print(usage)
def create_tab(self):
#创建两个表格:一个用户存储事务情况,一个用户存储每一行数据修改的情况
#注意,一个事务可以存储多行数据修改的情况
logging.info('creating table ...')
create_tb_sql ='''CREATE TABLE IF NOT EXISTS {} (
`auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`begin_time` datetime NOT NULL,
`end_time` datetime NOT NULL,
PRIMARY KEY (`auto_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
CREATE TABLE IF NOT EXISTS {} (
`auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`sqltype` int(11) NOT NULL COMMENT '1 is insert,2 is update,3 is delete',
`tran_num` int(11) NOT NULL COMMENT 'the transaction number',
`dbname` varchar(50) NOT NULL,
`tbname` varchar(50) NOT NULL,
PRIMARY KEY (`auto_id`),
KEY `sqltype` (`sqltype`),
KEY `dbname` (`dbname`),
KEY `tbname` (`tbname`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
truncate table {};
truncate table {};
'''.format(self.tbtran,self.tbrow,self.tbtran,self.tbrow)
self.cur.execute(create_tb_sql)
logging.info('created table {} and {}'.format(self.tbrow,self.tbtran))
def rowrecord(self):
#处理每一行binlog
#事务的结束采用 'Xid =' 来划分
#分析结果,按照一个事务为单位存储提交一次到db
try:
tran_num=1 #事务数
record_sql='' #行记录的insert sql
tran_sql='' #事务的insert sql
self.create_tab()
with open(self.fpath,'r') as binlog_file:
logging.info('begining to analyze the binlog file ,this may be take a long time !!!')
logging.info('analyzing...')
for bline in binlog_file:
if bline.find('Table_map:') != -1:
l = bline.index('server')
n = bline.index('Table_map')
begin_time = bline[:l:].rstrip(' ').replace('#', '20')
if record_sql=='':
self.begin_time = begin_time[0:4] + '-' + begin_time[4:6] + '-' + begin_time[6:]
self.db_name = bline[n::].split(' ')[1].replace('`', '').split('.')[0]
self.tb_name = bline[n::].split(' ')[1].replace('`', '').split('.')[1]
bline=''
elif bline.startswith('### INSERT INTO'):
record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (1,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)
elif bline.startswith('### UPDATE'):
record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (2,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)
elif bline.startswith('### DELETE FROM'):
record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (3,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)
elif bline.find('Xid =') != -1:
l = bline.index('server')
end_time = bline[:l:].rstrip(' ').replace('#', '20')
self.end_time = end_time[0:4] + '-' + end_time[4:6] + '-' + end_time[6:]
tran_sql=record_sql+"insert into {}(begin_time,end_time) VALUES ('{}','{}')".format(self.tbtran,self.begin_time,self.end_time)
self.cur.execute(tran_sql)
self.mysqlconn.commit()
record_sql = ''
tran_num += 1
except Exception:
return 'funtion rowrecord error'
def binlogdesc(self):
sql=''
t_num=0
r_num=0
logging.info('Analysed result printing...\n')
#分析总的事务数跟行修改数量
sql="select 'tbtran' name,count(*) nums from {} union all select 'tbrow' name,count(*) nums from {};".format(self.tbtran,self.tbrow)
self.cur.execute(sql)
rows=self.cur.fetchall()
for row in rows:
if row['name']=='tbtran':
t_num = row['nums']
else:
r_num = row['nums']
print('This binlog file has {} transactions, {} rows are changed '.format(t_num,r_num))
# 计算 最耗时 的单个事务
# 分析每个事务的耗时情况,分为5个时间段来描述
# 这里正常应该是 以毫秒来分析的,但是binlog中,只精确时间到second
sql='''select
count(case when cost_sec between 0 and 1 then 1 end ) cos_1,
count(case when cost_sec between 1.1 and 5 then 1 end ) cos_5,
count(case when cost_sec between 5.1 and 10 then 1 end ) cos_10,
count(case when cost_sec between 10.1 and 30 then 1 end ) cos_30,
count(case when cost_sec >30.1 then 1 end ) cos_more,
max(cost_sec) cos_max
from
(
select
auto_id,timestampdiff(second,begin_time,end_time) cost_sec
from {}
) a;'''.format(self.tbtran)
self.cur.execute(sql)
rows=self.cur.fetchall()
for row in rows:
print('The most cost time : {} '.format(row['cos_max']))
print('The distribution map of each transaction costed time: ')
print('Cost time between 0 and 1 second : {} , {}%'.format(row['cos_1'],int(row['cos_1']*100/t_num)))
print('Cost time between 1.1 and 5 second : {} , {}%'.format(row['cos_5'], int(row['cos_5'] * 100 / t_num)))
print('Cost time between 5.1 and 10 second : {} , {}%'.format(row['cos_10'], int(row['cos_10'] * 100 / t_num)))
print('Cost time between 10.1 and 30 second : {} , {}%'.format(row['cos_30'], int(row['cos_30'] * 100 / t_num)))
print('Cost time > 30.1 : {} , {}%\n'.format(row['cos_more'], int(row['cos_more'] * 100 / t_num)))
# 计算 单个事务影响行数最多 的行数量
# 分析每个事务 影响行数 情况,分为5个梯度来描述
sql='''select
count(case when nums between 0 and 10 then 1 end ) row_1,
count(case when nums between 11 and 100 then 1 end ) row_2,
count(case when nums between 101 and 1000 then 1 end ) row_3,
count(case when nums between 1001 and 10000 then 1 end ) row_4,
count(case when nums >10001 then 1 end ) row_5,
max(nums) row_max
from
(
select
count(*) nums
from {} group by tran_num
) a;'''.format(self.tbrow)
self.cur.execute(sql)
rows=self.cur.fetchall()
for row in rows:
print('The most changed rows for each row: {} '.format(row['row_max']))
print('The distribution map of each transaction changed rows : ')
print('Changed rows between 1 and 10 second : {} , {}%'.format(row['row_1'],int(row['row_1']*100/t_num)))
print('Changed rows between 11 and 100 second : {} , {}%'.format(row['row_2'], int(row['row_2'] * 100 / t_num)))
print('Changed rows between 101 and 1000 second : {} , {}%'.format(row['row_3'], int(row['row_3'] * 100 / t_num)))
print('Changed rows between 1001 and 10000 second : {} , {}%'.format(row['row_4'], int(row['row_4'] * 100 / t_num)))
print('Changed rows > 10001 : {} , {}%\n'.format(row['row_5'], int(row['row_5'] * 100 / t_num)))
# 分析 各个行数 DML的类型情况
# 描述 delete,insert,update的分布情况
sql='select sqltype ,count(*) nums from {} group by sqltype ;'.format(self.tbrow)
self.cur.execute(sql)
rows=self.cur.fetchall()
print('The distribution map of the {} changed rows : '.format(r_num))
for row in rows:
if row['sqltype']==1:
print('INSERT rows :{} , {}% '.format(row['nums'],int(row['nums']*100/r_num)))
if row['sqltype']==2:
print('UPDATE rows :{} , {}% '.format(row['nums'],int(row['nums']*100/r_num)))
if row['sqltype']==3:
print('DELETE rows :{} , {}%\n '.format(row['nums'],int(row['nums']*100/r_num)))
# 描述 影响行数 最多的表格
# 可以分析是哪些表格频繁操作,这里显示前10个table name
sql = '''select
dbname,tbname ,
count(*) ALL_rows,
count(*)*100/{} per,
count(case when sqltype=1 then 1 end) INSERT_rows,
count(case when sqltype=2 then 1 end) UPDATE_rows,
count(case when sqltype=3 then 1 end) DELETE_rows
from {}
group by dbname,tbname
order by ALL_rows desc
limit 10;'''.format(r_num,self.tbrow)
self.cur.execute(sql)
rows = self.cur.fetchall()
print('The distribution map of the {} changed rows : '.format(r_num))
print('tablename'.ljust(50),
'|','changed_rows'.center(15),
'|','percent'.center(10),
'|','insert_rows'.center(18),
'|','update_rows'.center(18),
'|','delete_rows'.center(18)
)
print('-------------------------------------------------------------------------------------------------------------------------------------------------')
for row in rows:
print((row['dbname']+'.'+row['tbname']).ljust(50),
'|',str(row['ALL_rows']).rjust(15),
'|',(str(int(row['per']))+'%').rjust(10),
'|',str(row['INSERT_rows']).rjust(10)+' , '+(str(int(row['INSERT_rows']*100/row['ALL_rows']))+'%').ljust(5),
'|',str(row['UPDATE_rows']).rjust(10)+' , '+(str(int(row['UPDATE_rows']*100/row['ALL_rows']))+'%').ljust(5),
'|',str(row['DELETE_rows']).rjust(10)+' , '+(str(int(row['DELETE_rows']*100/row['ALL_rows']))+'%').ljust(5),
)
print('\n')
logging.info('Finished to analyse the binlog file !!!')
def closeconn(self):
self.cur.close()
logging.info('release db connections\n')
def main():
p = queryanalyse()
p.rowrecord()
p.binlogdesc()
p.closeconn()
if __name__ == "__main__":
main()
基于binlog来分析mysql的行记录修改情况的更多相关文章
- 基于binlog来分析mysql的行记录修改情况(python脚本分析)
最近写完mysql flashback,突然发现还有有这种使用场景:有些情况下,可能会统计在某个时间段内,MySQL修改了多少数据量?发生了多少事务?主要是哪些表格发生变动?变动的数量是怎 ...
- 使用Anemometer分析MySQL慢查询记录
数据库管理员一般是用percona的toolkit工具来分析MySQL慢查询记录,但是不够直观. 下面介绍一款比较直观的工具来统计分析MySQL慢查询记录anemometer. 在使用之前需要安装pe ...
- mysql之行(记录)的详细操作
在Mysql管理软件中, 可以通过sql语句中的dml语言来实现数据的操作, 包括 使用INSERT实现数据的插入 UPDATE实现数据的更新 使用DELETE实现数据的删除 使用SELECT查询数据 ...
- MySql之行记录的详细操作,创建用户以及库表的授权
一 介绍 MySQL数据操作: DML ======================================================== 在MySQL管理软件中,可以通过SQL语句中的 ...
- mysql基于binlog回滚工具_flashback(python版本)
update.delete的条件写错甚至没有写,导致数据操作错误,需要恢复被误操作的行记录.这种情形,其实时有发生,可以选择用备份文件+binlog来恢复到测试环境,然后再做数据修复,但是这样 ...
- 百万年薪python之路 -- MySQL数据库之 MySQL行(记录)的操作(一)
MySQL的行(记录)的操作(一) 1. 增(insert) insert into 表名 value((字段1,字段2...); # 只能增加一行记录 insert into 表名 values(字 ...
- MySQL数据库备份还原(基于binlog的增量备份)
MySQL数据库备份还原(基于binlog的增量备份) 一.简介 1.增量备份 增量备份 是指在一次全备份或上一次增量备份后,以后每次的备份只需备份与前一次相比增加或者被修改的文件.这就意味 ...
- MySQL基于binlog主从复制
MySQL复制介绍 默认情况 下复制是异步进行的,从库也不需要一直连接到主库来同步数据 MySQL复制的数据粒度可以是主实例上所有的数据库,也可以是指定的一个或多个数据库 ,也可以是一个数据库里的指定 ...
- (4.11)mysql备份还原——mysql闪回技术(基于binlog)
0.闪回技术与工具简介 mysql闪回工具比较流行三大类: [0.1]官方的mysqlbinlog:支持数据库在线/离线,用脚本处理binlog的输出,转化成对应SQL再执行.通用性不好,对正则.se ...
随机推荐
- AOP记录方法的执行时间
作用AOP监控方法的运行时间如下: @Component @Aspect public class LogAop { private Logger log = LoggerFactory.getLog ...
- 【Python】数据库练习-1
三十四 数据库 1. 查看数据库命令 2. 使用某个数据库 3. 查看当前在哪个库 4. 查看当前数据库中有哪些表 5. 查询表中数据 6. 建库:cr ...
- [转]Deep Reinforcement Learning Based Trading Application at JP Morgan Chase
Deep Reinforcement Learning Based Trading Application at JP Morgan Chase https://medium.com/@ranko.m ...
- Max(rowid)是否走B树索引
Max(rowid)是否走B树索引 测试:SQL文本Max(rowid)执行计划是否走B树索引测试 一.猜测执行计划 当SQL语句中,执行max(rowid)时,执行计划猜测: A走B树索引全索引范围 ...
- 【机器学习基础】SVM实现分类识别及参数调优(二)
前言 实现分类可以使用SVM方法,但是需要人工调参,具体过程请参考here,这个比较麻烦,小鹅不喜欢麻烦,正好看到SVM可以自动调优,甚好! 注意 1.reshape的使用: https://docs ...
- ss server端配置
关于ss server的配置,可以参考一个网址 关于服务器的购买可以上VIRMACH购买 和本地安装ss类似,首先安装ss,pip install shadowsocks 配置服务器参数,vim /e ...
- python 中os的常用方法
1.更改当前的路径 import os os.chdir( "D:/java") 注意python中表示文件路径,文件夹之间用/或者\\不能使用\
- XXS level2
(1)用level1的方法尝试,发现行不通 (2)查看PHP源代码 <?php ini_set("display_errors", 0); $str = $_GET[&quo ...
- lesson7-图像描述 -小象cv
2018-04-25朴素rcnn - 梯度消失严重LSTM长短时记忆模型,有效捕捉长时记忆包含四个神经元组:一个记忆神经元三个控制门神经元:输入.忘记.输出 注意:输入调制门.输出调制门 3个输入:前 ...
- MyBatis like函数使用注意事项
百分号后面必须要加上空格,不然会将后面的字符串全部都黏在一起,导致sql语句运行报错