mmap系统调用(功能)

void *mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset)

内存映射函数mmap , 负责把文件内容映射到进程的虚拟内存空间,通过对这段内存的读取和修改,来实现对文件的读取和修改,而不需要再调用read, write等操作。

addr:        指定映射的起始地址,通常设为NULL, 由系统指定。

len:          映射到内存的文件长度

prot:      映射区的保护方式, 可以是:

PROT_EXEC:  映射区可被执行

PROT_READ:  映射区可被读取

PROT_WRITE: 映射区可被写入

flags:        映射区的特性,可以是:

MAP_SHARED:

写入映射区的数据会复制回文件,且允许其他映射该文件的进程共享

MAP_PRIVATE:

对映射区的写入操作会产生一个映射区的复制(copy-on-write), 对此区域所做的修改不会写回原文件。

fd:            由open返回的文件描述符,代表要映射的文件

offset:      以文件开始处的偏移量,必须是分页大小的整数倍,通常为0,表示从文件开头映射

解除映射

int munmap(void *start, size_t length)

功能:

取消参数start所指向的映射内存,参数length表示欲取消的内存大小

返回值:

解除成功返回0,否则返回-1,错误原因存于errno中。

注意:

mmap      不影响原文件的长度,如果写入的长度超出了原文件的长度,那么就只能写入原文件的长度大小的数据内容

代码:

#include <stdio.h>

#include <string.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/mman.h>

int main(void)

-{

|    int fd;

|    char *start=NULL;

|    char buf[100];

|

|    fd = open("t.txt", O_RDWR | O_CREAT);

|    start = mmap(NULL, 100, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

|

|    strcpy(buf, start);

|    printf("buf is %s\r\n", buf);

|

|    strcpy(start, "sky is hello");

|    munmap(start, 100);

|    close(fd);

|

|    return 0;

|}

虚拟内存区域

虚拟内存区域是进程的虚拟地址空间中的一个同质区间,即具有同样特性的连续地址

范围。一个进程的内存映像由下面几部分组成:程序代码、数据、BSS和栈区域,以及内存

映射的区域。

一个进程的内存区域可以通过 /proc/pid/maps来查看

例如:cat   /proc/6/maps

每一行的域为:

Start_end perm offset major:minor inode

Start: 该区域起始虚拟地址

End:该区域结束虚拟地址

Perm:读、写和执行权限;表示对这个区域,允许进程做什么。这个域的最后一个字符要么是p表示私有的,要么是s表示共享的

Offset: 被映射部分在文件中的起始地址

Major、minor: 主次设备号

Inode: 索引结点

Linux内核使用结构vm_area_struct

(<linux/mm_types.h>)来描述虚拟内存区域,其中几个主要成员如下:

unsigned long vm_start   虚拟内存区域起始地址

unsigned long vm_end    虚拟内存区域结束地址

unsigned long vm_flags    该区域的标记。如:VM_IO和VM_RESERVED。

VM_IO将该VMA标记为内存映射的IO区域,VM_IO会阻止系统将该区域包含在进程的存放转存(core dump)中, VM_RESERVED 标志内存区域不能被换出。

mmap设备操作

映射一个设备是指把用户空间的一段地址关联到设备内存上。当程序读写这段用户空间的地址时,它实际上是在访问设备。

内存管理单元去关联的,通过页式管理关联的,具体如何关联的去了解linux内存管理吧。

mmap设备方法需要完成什么功能?

Mmap方法是file_oprations结构的成员,在mmap系统调用发出时被调用。在此之前,内核已经完成了很多工作。Mmap设备方法所需要做的就是建立虚拟地址到物理地址的页表。

int  (*mmap) (struct file*, struct vm_area_struct *)

mmap如何完成页表的建立?

方法有二:

1、  使用remap_pfn_range一次建立所有页表;

2、  使用nopage  VMA方法每次建立一个页表

构造页表的工作可由remap_pfn_range函数完成,原型如下:

int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot)

vma:                         虚拟内存区域指针

virt_addr:        虚拟地址的起始值

pfn:                          要映射的物理地址所在的物理页帧号,可将物理地址>>PAGE_SHIFT得到,这个宏定义是12,就是除以4KB

size:              要映射的区域的大小

prot:              VMA的保护属性

例子:

int memdev_mmap(struct file *filp, struct vm_area_struct *vma)

{

//设置保护属性

vma->vm_flags |= VM_IO;

vma->vm_flags |= VM_RESERVED;

if (remap_pfm_range(vma, vma->vma-start, virt_to_phys(dev->data)>>PAGE_SHIFT,

size, vma->vm_page_prot))

return –EAGAIN;

return 0;

}

Dev-data是虚拟地址,就要用virt_to_phys转换为物理地址,如果是物理地址,那就不用转化了。

这样就实现了mmap的设备操作

欢迎交流
如有转载请注明出处

新浪博客:http://blog.sina.com.cn/u/2049150530
博客园:http://www.cnblogs.com/sky-heaven/
知乎:http://www.zhihu.com/people/zhang-bing-hua

Linux内核驱动--mmap设备方法【原创】的更多相关文章

  1. linux内核驱动模型

    linux内核驱动模型,以2.6.32内核为例.(一边写一边看的,有点乱.) 1.以内核对象为基础.用kobject表示,相当于其它对象的基类,是构建linux驱动模型的关键.具有相同类型的内核对象构 ...

  2. linux 内核驱动--Platform Device和Platform_driver注册过程

    linux 内核驱动--Platform Device和Platform_driver注册过程 从 Linux 2.6 起引入了一套新的驱动管理和注册机制 :Platform_device 和 Pla ...

  3. 【引用】Linux 内核驱动--多点触摸接口

    本文转载自James<Linux 内核驱动--多点触摸接口>   译自:linux-2.6.31.14\Documentation\input\multi-touch-protocol.t ...

  4. Linux内核驱动开发之KGDB原理介绍及kgdboe方式配置

    接博文<Linux内核驱动开发之KGDB单步调试内核(kgdboc方式)>.上篇博文中,仅简单介绍使用串口的Kgbd的流程(kgdboc方式),本文将重点介绍KGDB调试Linux内核的原 ...

  5. 嵌入式C语言自我修养 02:Linux 内核驱动中的指定初始化

    2.1 什么是指定初始化 在标准 C 中,当我们定义并初始化一个数组时,常用方法如下: ] = {,,,,,,,,}; 按照这种固定的顺序,我们可以依次给 a[0] 和 a[8] 赋值.因为没有对 a ...

  6. Linux内核源码分析方法_转

    Linux内核源码分析方法 转自:http://www.cnblogs.com/fanzhidongyzby/archive/2013/03/20/2970624.html 一.内核源码之我见 Lin ...

  7. Linux内核驱动学习(八)GPIO驱动模拟输出PWM

    文章目录 前言 原理图 IO模拟输出PWM 设备树 驱动端 调试信息 实验结果 附录 前言 上一篇的学习中介绍了如何在用户空间直接操作GPIO,并写了一个脚本可以产生PWM.本篇的学习会将写一个驱动操 ...

  8. Linux内核驱动学习(六)GPIO之概览

    文章目录 前言 功能 如何使用 设备树 API 总结 前言 GPIO(General Purpose Input/Output)通用输入/输出接口,是十分灵活软件可编程的接口,功能强大,十分常用,SO ...

  9. linux内核中创建线程方法

    1.头文件 #include <linux/sched.h> //wake_up_process() #include <linux/kthread.h> //kthread_ ...

随机推荐

  1. 【BZOJ1820】[JSOI2010]快递服务(动态规划)

    [BZOJ1820][JSOI2010]快递服务(动态规划) 题面 BZOJ 洛谷 题解 考虑无脑四维\(dp\).\(f[i][a][b][c]\),表示当前处理到第\(i\)个任务,三辆车的位置分 ...

  2. BZOJ 4754 [JSOI2016]独特的树叶 | 树哈希判同构

    题目链接 这道题是一道判断无根树同构的模板题,判断同构主要的思路就是哈希. 一遇到哈希题,一百个人能有一百零一种哈希方式,这篇题解随便选用了一种--类似杨弋<Hash在信息学竞赛中的一类应用&g ...

  3. jieba分词器

    始终觉得官方文档是最好的学习途径.嗯,我只是一个大自然的搬运工.传送门https://github.com/fxsjy/jieba 1.分词 jieba.cut 方法接受三个输入参数: 需要分词的字符 ...

  4. 调用系统命令之subprocess模块

    除了常见的os.system和os.popen方法,官方强烈推荐使用subprocess来调用系统命令. 这个库用起来其实很简单,按照惯例先贴一下官文关键点: The subprocess modul ...

  5. HDU 3605 Escape (网络流,最大流,位运算压缩)

    HDU 3605 Escape (网络流,最大流,位运算压缩) Description 2012 If this is the end of the world how to do? I do not ...

  6. SIEVE 线性筛

    今天来玩玩筛 英文:Sieve 有什么筛? 这里介绍:素数筛,欧拉筛,约数个数筛,约数和筛 为什么要用筛? 顾名思义,筛就是要漏掉没用的,留下有用的.最终筛出来1~n的数的一些信息. 为什么要用线性筛 ...

  7. A1081. Rational Sum

    Given N rational numbers in the form "numerator/denominator", you are supposed to calculat ...

  8. 【POJ1179】Polygon 区间DP

    这道题是典型的环形石子归并模型,破环成链后时间复杂度为\(O(n^3)\) 不过,因为题目中所给的数字可能是负数,仅仅记录区间内合并之后的最大值并不满足动态规划的最优子结构性质.因此,还需要额外记录下 ...

  9. Java中由常量类引发的思考

    我们都知道,定义一个常量类是十分简单的.首先差固件一个类,然后类中声明一些public修饰的静态常量.没错就这么简单: 写好之后,在其他地方使用的时候,直接类名.属性名就可以使用了. 而LZ现在想的是 ...

  10. 关于jqGrid中GridUnload方法的困惑

    首先 GridUnload 这个方法在 4.7.1 + 的版本中已经删除,直接把4.7.1中的grid.common.js合来用就行. GridUnload 这个方法是直接删除原来的table,重新生 ...