[BZOJ3080]Minimum Variance Spanning Tree/[BZOJ3754]Tree之最小方差树

题目大意:

给定一个\(n(n\le50)\)个点,\(m(m\le1000)\)条边的带权无向图,每条边的边权为\(w_i(w_i\le50)\)。求最小方差生成树。

3080数据范围:\(n\le50,m\le1000,w_i\le50\);

3754数据范围:\(n\le100,m\le1000,w_i\le100\)。

其中3754询问的是最小标准差。

思路:

由于\(w_i\)很小,因此我们可以枚举树上的边权和\(\sum w_i\),以\((w_i-\bar w)^2\)为新的边权做最小生成树。若最后树上的\(\sum w_i=\)一开始枚举的值,那么就更新答案。

源代码(3080):

#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=51,M=1001;
double d;
inline double sqr(const double &x) {
return x*x;
}
struct Edge {
int u,v,w;
bool operator < (const Edge &rhs) const {
return sqr(w-d)<sqr(rhs.w-d);
}
};
Edge edge[M];
class DisjointSet {
private:
int anc[N];
int find(const int &x) {
return x==anc[x]?x:anc[x]=find(anc[x]);
}
public:
void reset(const int &n) {
for(register int i=1;i<=n;i++) anc[i]=i;
}
void merge(const int &x,const int &y) {
anc[find(x)]=find(y);
}
bool same(const int &x,const int &y) {
return find(x)==find(y);
}
};
DisjointSet djs;
int main() {
for(register int i=1;;i++) {
const int n=getint(),m=getint();
if(n==0&&m==0) return 0;
for(register int i=1;i<=m;i++) {
edge[i].u=getint();
edge[i].v=getint();
edge[i].w=getint();
}
d=0;
std::sort(&edge[1],&edge[m]+1);
int l=0,r=0;
for(register int i=1;i<n;i++) l+=edge[i].w;
for(register int i=m;i>m-n+1;i--) r+=edge[i].w;
double ans=1e18;
for(register int i=l;i<=r;i++) {
d=1.*i/(n-1);
std::sort(&edge[1],&edge[m]+1);
djs.reset(n);
int sum1=0;
double sum2=0;
for(register int i=1;i<=m;i++) {
const int &u=edge[i].u,&v=edge[i].v;
if(djs.same(u,v)) continue;
djs.merge(u,v);
sum1+=edge[i].w;
sum2+=sqr(edge[i].w-d);
}
if(sum1==i) {
ans=std::min(ans,sum2/(n-1));
}
}
printf("Case %d: %.2f\n",i,ans);
}
}

源代码(3754):

#include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=101,M=2001;
double d;
inline double sqr(const double &x) {
return x*x;
}
struct Edge {
int u,v,w;
bool operator < (const Edge &rhs) const {
return sqr(w-d)<sqr(rhs.w-d);
}
};
Edge edge[M];
class DisjointSet {
private:
int anc[N];
int find(const int &x) {
return x==anc[x]?x:anc[x]=find(anc[x]);
}
public:
void reset(const int &n) {
for(register int i=1;i<=n;i++) anc[i]=i;
}
void merge(const int &x,const int &y) {
anc[find(x)]=find(y);
}
bool same(const int &x,const int &y) {
return find(x)==find(y);
}
};
DisjointSet djs;
int main() {
const int n=getint(),m=getint();
for(register int i=1;i<=m;i++) {
edge[i].u=getint();
edge[i].v=getint();
edge[i].w=getint();
}
std::sort(&edge[1],&edge[m]+1);
int l=0,r=0;
for(register int i=1;i<n;i++) l+=edge[i].w;
for(register int i=m;i>m-n+1;i--) r+=edge[i].w;
double ans=1e18;
for(register int i=l;i<=r;i++) {
d=1.*i/(n-1);
std::sort(&edge[1],&edge[m]+1);
djs.reset(n);
int sum1=0;
double sum2=0;
for(register int i=1;i<=m;i++) {
const int &u=edge[i].u,&v=edge[i].v;
if(djs.same(u,v)) continue;
djs.merge(u,v);
sum1+=edge[i].w;
sum2+=sqr(edge[i].w-d);
}
if(sum1==i) {
ans=std::min(ans,sum2/(n-1));
}
}
printf("%.4f\n",sqrt(ans));
}

[BZOJ3080]Minimum Variance Spanning Tree/[BZOJ3754]Tree之最小方差树的更多相关文章

  1. [BZOJ3754]Tree之最小方差树

    3754: Tree之最小方差树 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 402  Solved: 152[Submit][Status][Di ...

  2. 【bzoj3754】Tree之最小方差树 最小生成树

    题目描述 给出一张无向图,求它的一棵生成树,使得选出的所有边的方差最小.输出这个最小方差. 输入 第一行两个正整数N,M 接下来M行,每行三个正整数Ui,Vi,Ci N<=100,M<=2 ...

  3. 【枚举】【最小生成树】【kruscal】bzoj3754 Tree之最小方差树

    发现,若使方差最小,则使Σ(wi-平均数)2最小即可. 因为权值的范围很小,所以我们可以枚举这个平均数,每次把边权赋成(wi-平均数)2,做kruscal. 但是,我们怎么知道枚举出来的平均数是不是恰 ...

  4. bzoj3754 Tree之最小方差树 最小生成树+推性质

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3754 题解 感觉这个思路挺神仙的. 后悔没有好好观察题目的数据范围,一直把 \(n\) 和 \ ...

  5. BZOJ 3754 Tree之最小方差树 MST

    Description Wayne 在玩儿一个很有趣的游戏.在游戏中,Wayne 建造了N 个城市,现在他想在这些城市间修一些公路,当然并不是任意两个城市间都能修,为了道路系统的美观,一共只有M 对城 ...

  6. 【BZOJ 3754】Tree之最小方差树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3754 核心思想:暴力枚举所有可能的平均数,对每个平均数排序后Kruskal. 正确的答案一定是最小的 ...

  7. BZOJ 3754 Tree之最小方差树

    枚举平均数. mdzz编译器. #include<iostream> #include<cstdio> #include<cstring> #include< ...

  8. 【BZOJ 3754】: Tree之最小方差树

    题目链接: TP 题解: 都是骗子233,我还以为是什么神奇的算法. 由于边权的范围很小,最小生成树和最大生成树之间的总和差不会太大,所以可以枚举边权和,再直接根据方差建最小生成树,每次更新答案即可. ...

  9. bzoj 3754: Tree之最小方差树 模拟退火+随机三分

    题目大意: 求最小方差生成树.N<=100,M<=2000,Ci<=100 题解: 首先我们知道这么一个东西: 一些数和另一个数的差的平方之和的最小值在这个数是这些数的平均值时取得 ...

随机推荐

  1. oracle数据库自增主键重复

    select max(t.id) from T_PLAT_ENUM_VALUE tdrop sequence T_PLAT_ENUM_VALUE;create sequence T_PLAT_ENUM ...

  2. opencv学习笔记(九)Mat 访问图像像素的值

    对图像的像素进行访问,可以实现空间增强,反色,大部分图像特效系列都是基于像素操作的.图像容器Mat是一个矩阵的形式,一般情况下是二维的.单通道灰度图一般存放的是<uchar>类型,其数据存 ...

  3. EMCA和EMCTL的简单用法

    背景 其实这两个完全是两回事,不过倒是有关系,emca就是建立的资料库,建立后就用emctl来管理服务了.oem有问题基本都是重建emca,然后用emctl来操作. 当时用emca感觉真是一阵空白,太 ...

  4. svn数据库自动备份脚本

    创建一个存放备份数据的路径 mkdir /data/svnbak -p 采用shell脚本的方式实现自动备份 #vim backup.sh #!/bin/bash log="/data/sv ...

  5. Android:Service

    Android Service: http://www.apkbus.com/android-15649-1-1.html android service 的各种用法(IPC.AIDL): http: ...

  6. Oracle数据库操作基本语法

    创建表 SQL>create table classes(        classId number(2),        cname varchar2(40),        birthda ...

  7. Java基础95 过滤器 Filter

    1.filter 过滤器的概述 filter过滤器:是面向切面编程的一种实现策略,在不影响原来的程序流程的前提下,将一些业务逻辑切入流程中,在请求达到目标之前进行处理,一般用于编码过滤.权限过滤... ...

  8. InnoDB的关键特性-插入缓存,两次写,自适应hash索引

    InnoDB存储引擎的关键特性包括插入缓冲.两次写(double write).自适应哈希索引(adaptive hash index).这些特性为InnoDB存储引擎带来了更好的性能和更高的可靠性. ...

  9. jquery追加元素的不同语法

    问题 项目中越来越多的地方需要实现无刷新来更新页面局部内容,使用ajax从后台获取数据然后追加到页面中.那么怎么获取数据之后如何实现元素的追加呢? 解决 jQuery提供追加元素函数,掌握常用的四种追 ...

  10. 《LINQ技术详解C#》-2.查询表达式翻译为标准查询操作符

    (1)透明标识符 有些翻译步骤要使用透明标识符(*)插入枚举变量. 透明标识符只在翻译过程中存在,翻译结束将不再出现. (2)翻译步骤 ①带有into连续语句的Select和Group语句 from. ...