[BZOJ3080]Minimum Variance Spanning Tree/[BZOJ3754]Tree之最小方差树

题目大意:

给定一个\(n(n\le50)\)个点,\(m(m\le1000)\)条边的带权无向图,每条边的边权为\(w_i(w_i\le50)\)。求最小方差生成树。

3080数据范围:\(n\le50,m\le1000,w_i\le50\);

3754数据范围:\(n\le100,m\le1000,w_i\le100\)。

其中3754询问的是最小标准差。

思路:

由于\(w_i\)很小,因此我们可以枚举树上的边权和\(\sum w_i\),以\((w_i-\bar w)^2\)为新的边权做最小生成树。若最后树上的\(\sum w_i=\)一开始枚举的值,那么就更新答案。

源代码(3080):

#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=51,M=1001;
double d;
inline double sqr(const double &x) {
return x*x;
}
struct Edge {
int u,v,w;
bool operator < (const Edge &rhs) const {
return sqr(w-d)<sqr(rhs.w-d);
}
};
Edge edge[M];
class DisjointSet {
private:
int anc[N];
int find(const int &x) {
return x==anc[x]?x:anc[x]=find(anc[x]);
}
public:
void reset(const int &n) {
for(register int i=1;i<=n;i++) anc[i]=i;
}
void merge(const int &x,const int &y) {
anc[find(x)]=find(y);
}
bool same(const int &x,const int &y) {
return find(x)==find(y);
}
};
DisjointSet djs;
int main() {
for(register int i=1;;i++) {
const int n=getint(),m=getint();
if(n==0&&m==0) return 0;
for(register int i=1;i<=m;i++) {
edge[i].u=getint();
edge[i].v=getint();
edge[i].w=getint();
}
d=0;
std::sort(&edge[1],&edge[m]+1);
int l=0,r=0;
for(register int i=1;i<n;i++) l+=edge[i].w;
for(register int i=m;i>m-n+1;i--) r+=edge[i].w;
double ans=1e18;
for(register int i=l;i<=r;i++) {
d=1.*i/(n-1);
std::sort(&edge[1],&edge[m]+1);
djs.reset(n);
int sum1=0;
double sum2=0;
for(register int i=1;i<=m;i++) {
const int &u=edge[i].u,&v=edge[i].v;
if(djs.same(u,v)) continue;
djs.merge(u,v);
sum1+=edge[i].w;
sum2+=sqr(edge[i].w-d);
}
if(sum1==i) {
ans=std::min(ans,sum2/(n-1));
}
}
printf("Case %d: %.2f\n",i,ans);
}
}

源代码(3754):

#include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=101,M=2001;
double d;
inline double sqr(const double &x) {
return x*x;
}
struct Edge {
int u,v,w;
bool operator < (const Edge &rhs) const {
return sqr(w-d)<sqr(rhs.w-d);
}
};
Edge edge[M];
class DisjointSet {
private:
int anc[N];
int find(const int &x) {
return x==anc[x]?x:anc[x]=find(anc[x]);
}
public:
void reset(const int &n) {
for(register int i=1;i<=n;i++) anc[i]=i;
}
void merge(const int &x,const int &y) {
anc[find(x)]=find(y);
}
bool same(const int &x,const int &y) {
return find(x)==find(y);
}
};
DisjointSet djs;
int main() {
const int n=getint(),m=getint();
for(register int i=1;i<=m;i++) {
edge[i].u=getint();
edge[i].v=getint();
edge[i].w=getint();
}
std::sort(&edge[1],&edge[m]+1);
int l=0,r=0;
for(register int i=1;i<n;i++) l+=edge[i].w;
for(register int i=m;i>m-n+1;i--) r+=edge[i].w;
double ans=1e18;
for(register int i=l;i<=r;i++) {
d=1.*i/(n-1);
std::sort(&edge[1],&edge[m]+1);
djs.reset(n);
int sum1=0;
double sum2=0;
for(register int i=1;i<=m;i++) {
const int &u=edge[i].u,&v=edge[i].v;
if(djs.same(u,v)) continue;
djs.merge(u,v);
sum1+=edge[i].w;
sum2+=sqr(edge[i].w-d);
}
if(sum1==i) {
ans=std::min(ans,sum2/(n-1));
}
}
printf("%.4f\n",sqrt(ans));
}

[BZOJ3080]Minimum Variance Spanning Tree/[BZOJ3754]Tree之最小方差树的更多相关文章

  1. [BZOJ3754]Tree之最小方差树

    3754: Tree之最小方差树 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 402  Solved: 152[Submit][Status][Di ...

  2. 【bzoj3754】Tree之最小方差树 最小生成树

    题目描述 给出一张无向图,求它的一棵生成树,使得选出的所有边的方差最小.输出这个最小方差. 输入 第一行两个正整数N,M 接下来M行,每行三个正整数Ui,Vi,Ci N<=100,M<=2 ...

  3. 【枚举】【最小生成树】【kruscal】bzoj3754 Tree之最小方差树

    发现,若使方差最小,则使Σ(wi-平均数)2最小即可. 因为权值的范围很小,所以我们可以枚举这个平均数,每次把边权赋成(wi-平均数)2,做kruscal. 但是,我们怎么知道枚举出来的平均数是不是恰 ...

  4. bzoj3754 Tree之最小方差树 最小生成树+推性质

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3754 题解 感觉这个思路挺神仙的. 后悔没有好好观察题目的数据范围,一直把 \(n\) 和 \ ...

  5. BZOJ 3754 Tree之最小方差树 MST

    Description Wayne 在玩儿一个很有趣的游戏.在游戏中,Wayne 建造了N 个城市,现在他想在这些城市间修一些公路,当然并不是任意两个城市间都能修,为了道路系统的美观,一共只有M 对城 ...

  6. 【BZOJ 3754】Tree之最小方差树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3754 核心思想:暴力枚举所有可能的平均数,对每个平均数排序后Kruskal. 正确的答案一定是最小的 ...

  7. BZOJ 3754 Tree之最小方差树

    枚举平均数. mdzz编译器. #include<iostream> #include<cstdio> #include<cstring> #include< ...

  8. 【BZOJ 3754】: Tree之最小方差树

    题目链接: TP 题解: 都是骗子233,我还以为是什么神奇的算法. 由于边权的范围很小,最小生成树和最大生成树之间的总和差不会太大,所以可以枚举边权和,再直接根据方差建最小生成树,每次更新答案即可. ...

  9. bzoj 3754: Tree之最小方差树 模拟退火+随机三分

    题目大意: 求最小方差生成树.N<=100,M<=2000,Ci<=100 题解: 首先我们知道这么一个东西: 一些数和另一个数的差的平方之和的最小值在这个数是这些数的平均值时取得 ...

随机推荐

  1. V4L2文档翻译(一)【转】

    转自:https://blog.csdn.net/airk000/article/details/23218903 相关资料 https://www.kernel.org/doc/Documentat ...

  2. windows环境用python修改环境变量的注意点(含代码)

    1.部分环境变量字段需要保留原来的值,只是做添加,不可以替换 2.Path和PATH对于python来说是一样的,也就是说存在名为Path的环境变量时,添加PATH的环境变量,会覆盖原有的Path环境 ...

  3. 【bzoj2653】【middle】【主席树+二分答案】

    Description 一个长度为 n 的序列 a ,设其排过序之后为 b ,其中位数定义为 b[n/2] ,其中 a,b 从 0 开始标号 , 除法取下整. 给你一个长度为 n 的序列 s .回答 ...

  4. apache httpd.conf

    Apache的主配置文件:/etc/httpd/conf/httpd.conf 默认站点主目录:/var/www/html/ Apache服务器的配置信息全部存储在主配置文件/etc/httpd/co ...

  5. 017_nginx重定向需求

    重定向的各种需求 需求一. 前端同事需要把特定的url进行重定向,实现如下: location / { root /data/base.apiportal_opsweb; index index.ht ...

  6. Idea xml 粘贴文本保持原有格式

    setting->Editor->Code Style->XML 在右边的面板中,单击第二个 “Other” 的页签,勾选“Keep white spaces”,重启idea.

  7. [转]CentOS7 下安装svn

    1. 安装 centos(我这里使用的是CentOS7)下yum命令即可方便的完成安装 $ sudo yum install subversion 测试安装是否成功: $ svnserve --ver ...

  8. 【python】time和datetime的strptime不是线程安全的!

    来源:http://blog.csdn.net/kevin6216/article/details/9021039 在多线程中用strptime需要加锁!!!

  9. pytest二:setup和teardown

    用例运行级别 模块级(setup_module/teardown_module)开始于模块始末,全局的 函数级(setup_function/teardown_function)只对函数用例生效(不在 ...

  10. Unicode转义序列

    声明: web前端学习笔记,欢迎大神指点.联系QQ:1522025433. Javascipt 定义了一种特殊序列,使用6位ASCII字符代表任意16Unicode内码.这些Unicode转义序列均以 ...