题目链接

\(Description\)

有k种饮料,浓度Ai给出,求用最少的体积配成n/1000浓度的饮料。

\(Solution\)

根据题意有方程 (A1x1+A2x2+...+Anxn)/[(x1+x2+...+xn)1000] = x/1000

xi表示Ai选多少升(0<=xi).1000可以约掉.

这样带着带着选与不选不好考虑(我为什么会这么考虑。。太naive了)

ai表示选了ai浓度1L,则(a1+a2+...+am) = m*n

那么 ∑(ai-n) = 0 , -1000 <= ai-n <= 1000

于是1.可以以0为起点BFS,把每个(ai-n)作为一条边,直到(用最少的步数)再走到0

或是2.考虑DP,用f[i][sum]表示用iL是否得到sum

于是朴素的DP:

for(i=1; i<=1000; ++i)//可以证明最多只需要1000L
for(sum=-1000; sum<=1000; ++sum)//需要对sum加个偏移量
for(j=1; j<=k; ++j)
if(-1000<=sum-(a[j]-n)<=1000)
f[i][sum]|=f[i-1][sum-(a[j]-n)]

这仍然是O(n^3)的

可以把sum的一层循环用bitset压掉(f[i-1]左移a[j]位后再右移n位)。这个复杂度?O((n^3)/64)?

上面的证明(最多需要1kL): 假设要配x浓度,有a>x的浓度、b<x的浓度,有u(a-x)+v(b-x)=0

u=x-b, v=a-x时,就可以配成x,此时u+v = a-b <= 1000

ai只需考虑1000以内的即可

//31ms	5744KB
//被卡T了。。不得不加个特判
#include <cstdio>
#include <cctype>
#include <bitset>
#define gc() getchar()
const int N=1e6+5; int n,k,cnt,A[N];
bool vis[1005];
std::bitset<2018> f[2]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
} int main()
{
n=read(),k=read();
for(int tmp,i=1; i<=k; ++i)
if((tmp=read())<=1000) A[++cnt]=tmp,vis[tmp]=1;
f[1][1000]=1;
if(cnt<1000)
for(int now=1,las,i=1; i<=1000; ++i)
{
las=now, now^=1;
f[now].reset();
for(int j=1; j<=cnt; ++j)
f[now]|=(f[las]<<A[j])>>n;
if(f[now][1000]) {printf("%d",i); return 0;}
}
else
for(int now=1,las,i=1; i<=1000; ++i)
{
las=now, now^=1;
f[now].reset();
for(int j=0; j<=1000; ++j)
if(vis[j]) f[now]|=(f[las]<<j)>>n;
if(f[now][1000]) {printf("%d",i); return 0;}
}
printf("-1"); return 0;
}

Codeforces.788C.The Great Mixing(bitset DP / BFS)的更多相关文章

  1. Codeforces 788C The Great Mixing

    The Great Mixing 化简一下公式后发现, 问题变成了, 取最少多少数能使其和为1, bitset优化一下背包就好啦. 题解中介绍了一种bfs的方法没, 感觉比较巧妙. #include& ...

  2. Codeforces 788C The Great Mixing(背包问题建模+bitset优化或BFS)

    [题目链接] http://codeforces.com/problemset/problem/788/C [题目大意] 给出一些浓度的饮料,要求调出n/1000浓度的饮料,问最少需要多少升饮料 [题 ...

  3. Codeforces 789e The Great Mixing (bitset dp 数学)

    Sasha and Kolya decided to get drunk with Coke, again. This time they have k types of Coke. i-th typ ...

  4. hdu 3247 AC自动+状压dp+bfs处理

    Resource Archiver Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 100000/100000 K (Java/Ot ...

  5. Codeforces 755F PolandBall and Gifts bitset + 二进制优化多重背包

    PolandBall and Gifts 转换成置换群后, 对于最大值我们很好处理. 对于最小值, 只跟若干个圈能否刚好组能 k 有关. 最直观的想法就是bitset优化背包, 直接搞肯定T掉. 我们 ...

  6. 洛谷P3724 大佬 [AH2017/HNOI2017] dp+bfs

    正解:dp+bfs 解题报告: 传送门! 这题看起来很复杂的样子其实真的很复杂 但是仔细看一下题目,会发现其实操作只有两个目的嘛,一个是保证自己不死,一个是让对手减血 而且保证自己不死只有一种操作 而 ...

  7. BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS

    BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS Description Farmer John has taken the cows to a va ...

  8. BZOJ_1415_[Noi2005]聪聪和可可_概率DP+bfs

    BZOJ_1415_[Noi2005]聪聪和可可_概率DP+bfs Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2 ...

  9. [Codeforces 865C]Gotta Go Fast(期望dp+二分答案)

    [Codeforces 865C]Gotta Go Fast(期望dp+二分答案) 题面 一个游戏一共有n个关卡,对于第i关,用a[i]时间通过的概率为p[i],用b[i]通过的时间为1-p[i],每 ...

随机推荐

  1. Simulink--MATLAB中的一种可视化仿真工具

     Simulink是MATLAB中的一种可视化仿真工具, 是一种基于MATLAB的框图设计环境,是实现动态系统建模.仿真和分析的一个软件包,被广泛应用于线性系统.非线性系统.数字控制及数字信号处理的建 ...

  2. 通过全备+binlog_server同步恢复被drop的库或表

    MySQL 中drop 等高危误操作后恢复方法 实验目的: 本次实验以恢复drop操作为例,使用不同方法进行误操作的数据恢复. 方法: 利用master同步 :伪master+Binlog+同步(本文 ...

  3. 生产环境elasticsearch5.0.1和6.3.2集群的部署配置详解

    线上环境elasticsearch5.0.1集群的配置部署 es集群的规划: 硬件: 7台8核.64G内存.2T ssd硬盘加1台8核16G的阿里云服务器 其中一台作为kibana+kafka连接查询 ...

  4. zabbix3.0对tcp连接数和状态的监控优化

    zabbix3.0对tcp连接数及状态的监控优化 之前对tcp的监控采用netstat命令,发现在服务器繁忙的时候效果不理想,这个命令占用大量的cpu有时候高达90%以上,可能会导致业务的不稳定,所以 ...

  5. 使用Navicat Premium对sqlserver 2008进行表、字段及用户权限的精细化管理

    在一些特殊的业务场景,我们需要对数据库进行精细化的管理,比如只能授权给某用户某个表的操作权限,最小权限法则可以保障数据库最大的安全.利用navicat这个轻量化的工具可以很轻松的解决这个问题 1.通过 ...

  6. (转)eclipse 创建maven web项目

    1.新建Maven项目 1.1 File -> New -> Other 1.2 选择Maven Project ,单击Next 1.3 保持默认即可,单击Next 1.4 选择Arche ...

  7. android 获取手机GSM/CDMA信号信息,并获得基站信息

    本文转自:http://software.intel.com/zh-cn/blogs/2011/12/16/android-gsmcdma/ 在Android中我们常用的轻松获取WIFI信号列表,那如 ...

  8. Oracle数据库常用Sql语句大全

    一,数据控制语句 (DML) 部分 1.INSERT  (往数据表里插入记录的语句) INSERT INTO 表名(字段名1, 字段名2, ……) VALUES ( 值1, 值2, ……); INSE ...

  9. vue系列之生命周期

    代码: <body> <div id="app"> {{message}} </div> <script type="text/ ...

  10. JAVA Random 随机类

    nextInt 方法 得到一个随机整数, 可以指定范围 package object; import static net.util.Print.*; import java.util.Random; ...