动态规划的概念对于新手来说枯燥难懂,就算看懂了,做题的时候依旧抓耳挠腮的毫无头绪,这些比较难理解的算法,还是需要根据例子来一步步学习和理解,从而熟练掌握,下面,咱们就通过一个简单的小例子来学习动态规划:

数字三角形(POJ1163)

在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大。

路径上的每一步都只能往左下或 右下走。只需要求出这个最大和即可,不必给出具体路径。 三角形的行数大于1小于等于100,数字为 0 - 99

输入格式:

5      //表示三角形的行数    接下来输入三角形

7

3   8

8   1   0

2   7   4   4

4   5   2   6   5

要求输出最大和

咱们来分析这道题:

1.需要有一个变量 n 来存储输入的行数

2.需要一个二维数组 a 来存储输入的数字三角形

3.需要另一个同样大小的二维数组 b,用来存储到每一层的每一个数的最短路径,

例如:

到三角形的第三层,有两条路会经过1,

由于7+3=10<7+8=15,所以b数组的1的位置存储的是最短路径7—>3—>1等于11,

而在最两边的,就直接累加就ok了,7+3+8=18,7+8+0=15

这也是这个程序的核心部分,代码如下:

因为第一层跟a数组的第一层相同,所以i从1开始循环

然后遍历最后一层,求出最小值就ok啦

b数组最后的值

完整代码如下:

import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sca = new Scanner(System.in);
int n = sca.nextInt();
int[][] a = new int[n][n];
int[][] b = new int[n][n];
int min;
for(int i = 0;i<n;i++){
for(int j = 0;j<=i;j++){
a[i][j] = sca.nextInt();
}
} b[0][0] = a[0][0];
for(int i = 1;i<n;i++){
for(int j = 0;j<=i;j++){
if(j==0)//左侧,直接相加
b[i][j] = b[i-1][j]+a[i][j];
else if(j==i)//右侧,直接相加
b[i][j] = b[i-1][j-1]+a[i][j];
else//中间,需要用min函数求经过这条路的最短路径
b[i][j] = Math.min(b[i-1][j-1],b[i-1][j])+a[i][j];
}
} min = b[n-1][0];
for(int i = 1;i<b[n-1].length;i++){
if(b[n-1][i]<min)
min = b[n-1][i];
}
System.out.println(min);
}
}

  

总结一下动态规划的解题思路:

1,将原问题分解为简单的子问题,子问题求出来之后,原问题也就很容易得到了

2,确定状态转移方程

这道题的状态转移方程:

动态规划一般可分为线性动规,区域动规,树形动规,背包动规四类。
举例:
线性动规:拦截导弹,合唱队形,挖地雷,建学校,剑客决斗等;
区域动规:石子合并, 加分二叉树,统计单词个数,炮兵布阵等;
树形动规:贪吃的九头龙,二分查找树,聚会的欢乐,数字三角形等;
背包问题:01背包问题,完全背包问题,分组背包问题,二维背包,装箱问题,挤牛奶(同济ACM第1132题)等;
应用实例:
最短路径问题 ,项目管理,网络流优化等;
以上例子,每类挑选一题或两题练习即可
 
 
 
所有的算法都需要多加练习,应用起来才能得心应手,希望我的这篇博客能给各位爱学习的同伴们带去一些收获,我也是新手,大家共同努力,加油!

动态规划入门——数字三角形(Java)的更多相关文章

  1. 动态规划之数字三角形(POJ1163)

    在下面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大.路径上的每一步都只能往左下或 右下走.只需要求出这个最大和即可,不必给出具体路径. 既然求目标问题是根据查表得来的,自然 ...

  2. JDOJ 1606 数字三角形

    JDOJ 1606: 数字三角形 JDOJ传送门 Description 输入n,输出n的数字三角形 见样例 Input n Output n的数字三角形 Sample Input 4 Sample ...

  3. 简单DP入门(一) 数字三角形

    数字三角形

  4. 动态规划略有所得 数字三角形(POJ1163)

    在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大.路径上的每一步都只能往左下或 右下走.只需要求出这个最大和即可,不必给出具体路径. 三角形的行数大于1小于等于100,数 ...

  5. hihoCoder #1037 : 数字三角形 (动态规划)

    题目链接:https://hihocoder.com/problemset/problem/1037# 问题描述 小Hi和小Ho在经历了螃蟹先生的任务之后被奖励了一次出国旅游的机会,于是他们来到了大洋 ...

  6. Problem C: 动态规划基础题目之数字三角形

    Problem C: 动态规划基础题目之数字三角形 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 208  Solved: 139[Submit][Sta ...

  7. 数字三角形 (DP入门)

    7 3     8 8     1     0 2     7     4     4  4     5     2     6     5 给出一个数字三角形.从三角形的顶部到底部有很多条不同的路径 ...

  8. Java实现 蓝桥杯 算法训练 数字三角形

    算法训练 数字三角形 时间限制:1.0s 内存限制:256.0MB 问题描述 (图3.1-1)示出了一个数字三角形. 请编一个程序计算从顶至底的某处的一条路 径,使该路径所经过的数字的总和最大. ●每 ...

  9. [动态规划]数字三角形(版本I-III)

    level 1 1.1题目 1.1.1题目描述 考虑在下面被显示的数字金字塔. 写一个程序来计算从最高点开始在底部任意处结束的路径经过数字的和的最大.每一步可以走到左下方的点也可以到达右下方的点. 在 ...

随机推荐

  1. 【Java】【异常】

    java中2种方法处理异常:1.在发⽣异常的地方直接处理:2.将异常抛给调用者,让调⽤者处理.异常分类1.检查性异常: java.lang.Exception2.运⾏期异常: java.lang.Ru ...

  2. WebPack基本概念以及基本使用

    入门Webpack,看这篇就够了 2017年9月18日更新,添加了一个使用webpack配置多页应用的demo,可以点击此处查看 2017年8月13日更新,本文依据webpack3.5.3将文章涉及代 ...

  3. chrome浏览器的SwitchyOmega插件使用方法

    对于有某些特殊需求的人来讲,应该对这个插件不陌生,但是很多人不了解这插件的工作原理,百度的老教程又很烂,在刚开始用的时候我也不知道怎么办,去百度搜出来的教程基本都是让下载个规则文件让你去导入,但一般这 ...

  4. _faction

    一.自定义阵营独立于联盟,部落,联盟和部落玩家可以加入同一阵营 二._function_menu表可以配置自定义阵营开启 二.配合_pvp表,可以实现区域的自定义阵营PVP 三.配合_req表fact ...

  5. _itemmod_currency_like

    设置物品掉落模式为货币类型功能:掉落的时候 所有人都可以拿,就像公正徽章,每个人都会获得一个.小技巧:配合DBC使用,可以将该道具其显示在角色栏的货币中.1.转存item_template,在item ...

  6. Sqlserver中分页,2012后支持offset + fetch,2012之前用rownum嵌套查询

    今天发现原先用的sql offset fetch好用,换了一个DB就歇菜 歇菜截图 比较了一下,是数据库版本的问题 一个是13,一个是10 版本低的不支持用offset + fetch 进行分页,ms ...

  7. ASP.net MVC模式介绍(一)

    一.ASP.NET 支持三种不同的开发模式:Web Pages(Web 页面).MVC(Model View Controller 模型-视图-控制器)表现层.Web Forms(Web 窗体) mv ...

  8. Qt532界面.ZC测试

    ZC:Delphi中只要随便拖几个控件,设置一下属性就OK了.但是,Qt中 貌似没有 方便的方式来做这个... ZC:目前的解决方案是:Qt中 拖几个控件,然后点 工具条里面的 "栅格布局( ...

  9. Windows下pipenv将虚环境文件的位置设置在项目根目录下

    在windows下使用pipenv shell时,虚拟环境文件夹会在C:\Users\Administrator\.virtualenvs\目录下默认创建,为了方便管理,将这个虚环境的文件的位置更改一 ...

  10. 《剑指offer》第五十四题(二叉搜索树的第k个结点)

    // 面试题54:二叉搜索树的第k个结点 // 题目:给定一棵二叉搜索树,请找出其中的第k大的结点. #include <iostream> #include "BinaryTr ...