一、QuerySet

1.可切片

使用Python 的切片语法来限制查询集记录的数目 。它等同于SQL 的LIMIT 和OFFSET 子句。

 >>> Entry.objects.all()[:5]      # (LIMIT 5)
>>> Entry.objects.all()[5:10]    # (OFFSET 5 LIMIT 5)

不支持负的索引(例如Entry.objects.all()[-1])。通常,查询集 的切片返回一个新的查询集 —— 它不会执行查询。

2.可迭代

articleList=models.Article.objects.all()

for article in articleList:
print(article.title)

3.惰性查询

查询集 是惰性执行的 —— 创建查询集不会带来任何数据库的访问。直到你用到了查询集,才会访问数据库取值

queryResult=models.Article.objects.all() # not hits database   没有访问数据库

print(queryResult) # hits database       此时才访问数据库

for article in queryResult:
print(article.title) # hits database

4.缓存机制

queryResult=models.Article.objects.all()
print([a.title for a in queryResult])
print([a.create_time for a in queryResult])

此时只访问了一次数据库,第二次for取值时是从缓存中取的

但是缓存肯定是有数据限制的,不可能无限的存值,那就用到了下面的   iterator()  方法

5.  exists()与iterator()方法

 if queryResult.exists():
#SELECT (1) AS "a" FROM "blog_article" LIMIT 1; args=()
print("exists...")
当queryset非常巨大时,cache会成为问题。
处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统 进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法 来获取数据,处理完数据就将其丢弃。 objs = Book.objects.all().iterator()
# iterator()可以一次只从数据库获取少量数据,这样可以节省内存
for obj in objs:
print(obj.title)
#BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了
for obj in objs:
print(obj.title) 当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使 #用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询。

总结:

queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。 使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能 会造成额外的数据库查询。 

二、extra

extra(select=None, where=None, params=None,
tables=None, order_by=None, select_params=None)
有些情况下,Django的查询语法难以简单的表达复杂的 WHERE 子句,对于这种情况, Django 提供了 extra() QuerySet修改机制 — 它能在 QuerySet生成的SQL从句中注入新子句
extra可以指定一个或多个 参数,例如 select, where or tables. 这些参数都不是必须的,但是你至少要使用一个!要注意这些额外的方式对不同的数据库引擎可能存在移植性问题.(因为你在显式的书写SQL语句),除非万不得已,尽量避免这样做 参数之select
The select 参数可以让你在 SELECT 从句中添加其他字段信息,它应该是一个字典,存放着属性名到 SQL 从句的映射。
queryResult=models.Article
           .objects.extra(select={'is_recent': "create_time > '2017-09-05'"})
结果集中每个 Entry 对象都有一个额外的属性is_recent, 它是一个布尔值,表示 Article对象的create_time 是否晚于2017-09-05.
练习:
# in sqlite:
article_obj=models.Article.objects
              .filter(nid=1)
              .extra(select={"standard_time":"strftime('%%Y-%%m-%%d',create_time)"})
              .values("standard_time","nid","title")
print(article_obj)
# <QuerySet [{'title': 'MongoDb 入门教程', 'standard_time': '2017-09-03', 'nid': 1}]>
参数之where / tables
您可以使用where定义显式SQL WHERE子句 - 也许执行非显式连接。您可以使用tables手动将表添加到SQL FROM子句。
where和tables都接受字符串列表。所有where参数均为“与”任何其他搜索条件。
举例来讲:
queryResult=models.Article
           .objects.extra(where=['nid in (1,3) OR title like "py%" ','nid>2'])

三、整体插入

创建对象时,尽可能使用bulk_create()来减少SQL查询的数量。例如:

Entry.objects.bulk_create([
Entry(headline="Python 3.0 Released"),
Entry(headline="Python 3.1 Planned")
])

...更优于:

Entry.objects.create(headline="Python 3.0 Released")
Entry.objects.create(headline="Python 3.1 Planned")

注意该方法有很多注意事项,所以确保它适用于你的情况。

这也可以用在ManyToManyFields中,所以:

my_band.members.add(me, my_friend)

...更优于:

my_band.members.add(me)
my_band.members.add(my_friend)

...其中Bands和Artists具有多对多关联。

四、中介模型

class Article(models.Model):
title = models.CharField(max_length=50, verbose_name='文章标题')
tags = models.ManyToManyField(
to="Tag",
through='Article2Tag',
through_fields=('article', 'tag'),
)
----------多对多不用django创建的第三张表,用我自己定义的表,并且指定字段 这种情况我们可以在自己定义的第三张表中添加有用的字段 但是这样的情况下,如果新增文章时,在选tag标签后,在后端无法用 article_obj.tags.add()方法添加(其他的remove等方法都不管用),因为django不知道你是否新增了有用的字段,并且不知道是否给后添加的字段传值。这就是中介模型。 解决办法就是 :直接去自定义的第三张表 自己添加记录

五、查询优化   (  本质就是把表联起来了)

表数据

class UserInfo(AbstractUser):
"""
用户信息
"""
nid = models.BigAutoField(primary_key=True)
nickname = models.CharField(verbose_name='昵称', max_length=32)
telephone = models.CharField(max_length=11, blank=True, null=True, unique=True, verbose_name='手机号码')
avatar = models.FileField(verbose_name='头像',upload_to = 'avatar/',default="/avatar/default.png")
create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True) fans = models.ManyToManyField(verbose_name='粉丝们',
to='UserInfo',
through='UserFans',
related_name='f',
through_fields=('user', 'follower')) def __str__(self):
return self.username class UserFans(models.Model):
"""
互粉关系表
"""
nid = models.AutoField(primary_key=True)
user = models.ForeignKey(verbose_name='博主', to='UserInfo', to_field='nid', related_name='users')
follower = models.ForeignKey(verbose_name='粉丝', to='UserInfo', to_field='nid', related_name='followers') class Blog(models.Model): """
博客信息
"""
nid = models.BigAutoField(primary_key=True)
title = models.CharField(verbose_name='个人博客标题', max_length=64)
site = models.CharField(verbose_name='个人博客后缀', max_length=32, unique=True)
theme = models.CharField(verbose_name='博客主题', max_length=32)
user = models.OneToOneField(to='UserInfo', to_field='nid')
def __str__(self):
return self.title class Category(models.Model):
"""
博主个人文章分类表
"""
nid = models.AutoField(primary_key=True)
title = models.CharField(verbose_name='分类标题', max_length=32) blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid') class Article(models.Model): nid = models.BigAutoField(primary_key=True)
title = models.CharField(max_length=50, verbose_name='文章标题')
desc = models.CharField(max_length=255, verbose_name='文章描述')
read_count = models.IntegerField(default=0)
comment_count= models.IntegerField(default=0)
up_count = models.IntegerField(default=0)
down_count = models.IntegerField(default=0)
category = models.ForeignKey(verbose_name='文章类型', to='Category', to_field='nid', null=True)
create_time = models.DateField(verbose_name='创建时间')
blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid')
tags = models.ManyToManyField(
to="Tag",
through='Article2Tag',
through_fields=('article', 'tag'),
) class ArticleDetail(models.Model):
"""
文章详细表
"""
nid = models.AutoField(primary_key=True)
content = models.TextField(verbose_name='文章内容', ) article = models.OneToOneField(verbose_name='所属文章', to='Article', to_field='nid') class Comment(models.Model):
"""
评论表
"""
nid = models.BigAutoField(primary_key=True)
article = models.ForeignKey(verbose_name='评论文章', to='Article', to_field='nid')
content = models.CharField(verbose_name='评论内容', max_length=255)
create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True) parent_comment = models.ForeignKey('self', blank=True, null=True, verbose_name='父级评论')
user = models.ForeignKey(verbose_name='评论者', to='UserInfo', to_field='nid') up_count = models.IntegerField(default=0) def __str__(self):
return self.content class ArticleUpDown(models.Model):
"""
点赞表
"""
nid = models.AutoField(primary_key=True)
user = models.ForeignKey('UserInfo', null=True)
article = models.ForeignKey("Article", null=True)
models.BooleanField(verbose_name='是否赞') class CommentUp(models.Model):
"""
点赞表
"""
nid = models.AutoField(primary_key=True)
user = models.ForeignKey('UserInfo', null=True)
comment = models.ForeignKey("Comment", null=True) class Tag(models.Model):
nid = models.AutoField(primary_key=True)
title = models.CharField(verbose_name='标签名称', max_length=32)
blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid') class Article2Tag(models.Model):
nid = models.AutoField(primary_key=True)
article = models.ForeignKey(verbose_name='文章', to="Article", to_field='nid')
tag = models.ForeignKey(verbose_name='标签', to="Tag", to_field='nid')

1.select_related

1.1简单使用:

对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化。

select_related 返回一个QuerySet,当执行它的查询时它沿着外键关系查询关联的对象的数据。它会生成一个复杂的查询并引起性能的损耗,但是在以后使用外键关系时将不需要数据库查询。

简单说,在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。

下面的例子解释了普通查询和select_related() 查询的区别。

查询id=2的文章的分类名称,下面是一个标准的查询:

# Hits the database.
article=models.Article.objects.get(nid=2) # Hits the database again to get the related Blog object.
print(article.category.title) ''' SELECT
"blog_article"."nid",
"blog_article"."title",
"blog_article"."desc",
"blog_article"."read_count",
"blog_article"."comment_count",
"blog_article"."up_count",
"blog_article"."down_count",
"blog_article"."category_id",
"blog_article"."create_time",
"blog_article"."blog_id",
"blog_article"."article_type_id"
FROM "blog_article"
WHERE "blog_article"."nid" = 2; args=(2,) SELECT
"blog_category"."nid",
"blog_category"."title",
"blog_category"."blog_id"
FROM "blog_category"
WHERE "blog_category"."nid" = 4; args=(4,) '''
撞了两次库

如果我们使用select_related()函数:

articleList=models.Article.objects.select_related("category").all()

    for article_obj in articleList:
# Doesn't hit the database, because article_obj.category
# has been prepopulated in the previous query.
print(article_obj.category.title) SELECT
"blog_article"."nid",
"blog_article"."title",
"blog_article"."desc",
"blog_article"."read_count",
"blog_article"."comment_count",
"blog_article"."up_count",
"blog_article"."down_count",
"blog_article"."category_id",
"blog_article"."create_time",
"blog_article"."blog_id",
"blog_article"."article_type_id", "blog_category"."nid",
"blog_category"."title",
"blog_category"."blog_id" FROM "blog_article"
LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid");
只撞了一次库

1.2多外键查询:

这是针对category的外键查询,如果是另外一个外键呢?让我们一起看下:

article=models.Article.objects.select_related("category").get(nid=1)
print(article.articledetail)

观察logging结果,发现依然需要查询两次,所以需要改为:

article=models.Article.objects.select_related("category","articledetail").get(nid=1)
print(article.articledetail)

或者:

article=models.Article.objects
             .select_related("category")
             .select_related("articledetail")
             .get(nid=1) # django 1.7 支持链式操作
print(article.articledetail)
SELECT

    "blog_article"."nid",
"blog_article"."title",
...... "blog_category"."nid",
"blog_category"."title",
"blog_category"."blog_id", "blog_articledetail"."nid",
"blog_articledetail"."content",
"blog_articledetail"."article_id" FROM "blog_article"
LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid")
LEFT OUTER JOIN "blog_articledetail" ON ("blog_article"."nid" = "blog_articledetail"."article_id")
WHERE "blog_article"."nid" = 1; args=(1,) 只撞了一次库

1.3深层查询

# 查询id=1的文章的用户姓名

    article=models.Article.objects.select_related("blog").get(nid=1)
print(article.blog.user.username)

依然需要查询两次:

SELECT
"blog_article"."nid",
"blog_article"."title",
...... "blog_blog"."nid",
"blog_blog"."title", FROM "blog_article" INNER JOIN "blog_blog" ON ("blog_article"."blog_id" = "blog_blog"."nid")
WHERE "blog_article"."nid" = 1; SELECT
"blog_userinfo"."password",
"blog_userinfo"."last_login",
...... FROM "blog_userinfo"
WHERE "blog_userinfo"."nid" = 1;

这是因为第一次查询没有query到userInfo表,所以,修改如下:

article=models.Article.objects.select_related("blog__user").get(nid=1)
print(article.blog.user.username) SELECT "blog_article"."nid", "blog_article"."title",
...... "blog_blog"."nid", "blog_blog"."title",
...... "blog_userinfo"."password", "blog_userinfo"."last_login",
...... FROM "blog_article" INNER JOIN "blog_blog" ON ("blog_article"."blog_id" = "blog_blog"."nid") INNER JOIN "blog_userinfo" ON ("blog_blog"."user_id" = "blog_userinfo"."nid")
WHERE "blog_article"."nid" = 1;

1.4总结

1.select_related主要针一对一和多对一关系进行优化。
2.select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
3.可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。
4.没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
5.也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
6.也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
7.Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。

2.prefetch_related()

对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。

prefetch_related()的解决方法是,分别查询每个表,然后用Python处理他们之间的关系。

# 查询所有文章关联的所有标签
article_obj=models.Article.objects.all()
for i in article_obj: print(i.tags.all()) #4篇文章: hits database 5

改为prefetch_related:

# 查询所有文章关联的所有标签
article_obj=models.Article.objects.prefetch_related("tags").all()
for i in article_obj: print(i.tags.all()) #4篇文章: hits database 2 SELECT "blog_article"."nid",
"blog_article"."title",
...... FROM "blog_article"; SELECT
("blog_article2tag"."article_id") AS "_prefetch_related_val_article_id",
"blog_tag"."nid",
"blog_tag"."title",
"blog_tag"."blog_id"
FROM "blog_tag"
INNER JOIN "blog_article2tag" ON ("blog_tag"."nid" = "blog_article2tag"."tag_id")
WHERE "blog_article2tag"."article_id" IN (1, 2, 3, 4);

python--model进阶的更多相关文章

  1. Django框架学习-Model进阶用法

    Model进阶用法 回顾 访问外键 访问多对多关系 更改数据库结构 当处理数据库结构改变时,需要注意到几点: 增加字段 首先在开发环境中: 再到产品环境中: 删除字段 删除多对多字段 删除model ...

  2. python最全学习资料:python基础进阶+人工智能+机器学习+神经网络(包括黑马程序员2017年12月python视频(百度云链接))

    首先用数据说话,看看资料大小,达到675G 承诺:真实资料.不加密,获取资料请加QQ:122317653 包含内容:1.python基础+进阶+应用项目实战 2.神经网络算法+python应用 3.人 ...

  3. python学习大全:python基础进阶+人工智能+机器学习+神经网络

    首先用数据说话,看看资料大小,达到675G承诺:真实资料.不加密.(鉴于太多朋友加我QQ,我无法及时回复,) 方便的朋友给我点赞.评论下,谢谢!(内容较大,多次保存) [hide]链接:[url]ht ...

  4. Python爬虫进阶四之PySpider的用法

    审时度势 PySpider 是一个我个人认为非常方便并且功能强大的爬虫框架,支持多线程爬取.JS动态解析,提供了可操作界面.出错重试.定时爬取等等的功能,使用非常人性化. 本篇内容通过跟我做一个好玩的 ...

  5. Python爬虫进阶五之多线程的用法

    前言 我们之前写的爬虫都是单个线程的?这怎么够?一旦一个地方卡到不动了,那不就永远等待下去了?为此我们可以使用多线程或者多进程来处理. 首先声明一点! 多线程和多进程是不一样的!一个是 thread ...

  6. Python爬虫进阶三之Scrapy框架安装配置

    初级的爬虫我们利用urllib和urllib2库以及正则表达式就可以完成了,不过还有更加强大的工具,爬虫框架Scrapy,这安装过程也是煞费苦心哪,在此整理如下. Windows 平台: 我的系统是 ...

  7. Python爬虫进阶一之爬虫框架概述

    综述 爬虫入门之后,我们有两条路可以走. 一个是继续深入学习,以及关于设计模式的一些知识,强化Python相关知识,自己动手造轮子,继续为自己的爬虫增加分布式,多线程等功能扩展.另一条路便是学习一些优 ...

  8. Python模块(进阶3)

    转载请标明出处: http://www.cnblogs.com/why168888/p/6411917.html 本文出自:[Edwin博客园] Python模块(进阶3) 1. python中模块和 ...

  9. Python面向对象进阶(二)

    Python面向对象进阶2.html :first-child{margin-top:0!important}img.plugin{box-shadow:0 1px 3px rgba(0,0,0,.1 ...

  10. 学习推荐《从Excel到Python数据分析进阶指南》高清中文版PDF

    Excel是数据分析中最常用的工具,本书通过Python与Excel的功能对比介绍如何使用Python通过函数式编程完成Excel中的数据处理及分析工作.在Python中pandas库用于数据处理,我 ...

随机推荐

  1. Component 组件props 属性设置

    props定义属性并获取属性值 html <div id="app"> <!-- 注册一个全局逐渐 --> <!-- 注意如果自定义的属性带-像下面这 ...

  2. 【.Net】在windows server 2016 和Windows10这些server上安装.net fw3.5

    一般就是打开server manager. 一直next到add feature 讲net3.5勾选 发现需要指定一个路径是什么 source\sxs之类的 下载microsoft-windows-n ...

  3. PTA 7-3 jmu-ds-单链表的基本运算(15 分)

    jmu-ds-单链表的基本运算(15 分) 实现单链表的基本运算:初始化.插入.删除.求表的长度.判空.释放.(1)初始化单链表L,输出L->next的值:(2)依次采用尾插法插入元素:输入分两 ...

  4. ArcGis连接oracle、oracle配置

    服务器:Oracle 11g(我是默认路径安装,自定义路径没成功,不知道为什么) 客户端:arcgis desktop 10.2.oracle 11g 32位客户端 客户端:arcgis server ...

  5. 安装Windows10系统注意事项

    硬盘的AHCI开启: 报错解决:将Secure Boot 设置为Disabled  win10系统下载地址:ed2k://|file|cn_windows_10_multi-edition_versi ...

  6. There is no Action mapped for namespace / and action name .解答

    做struts2登陆检验的时候遇到了一个问题: 输入http://localhost/login_validation/的目的是想显示 文件夹下的文件列表,无奈,使用struts框架,web.xml设 ...

  7. 【Java】【路径】

    [java中Class.getResource用法(用于配置文件的读取)] 用JAVA获取文件,听似简单,但对于很多像我这样的新人来说,还是掌握颇浅,用起来感觉颇深,大常最经常用的,就是用JAVA的F ...

  8. 前端阶段_div以及css介绍

    1.div div是html的一个标签,是块级元素,单独使用没有意义,必须结合css来使用,进行网页布局 2.span span是一个html标签,是一个内联元素,主要对括起来的内容进行修饰 3.&l ...

  9. Qt网络应用开发初步

      应用层的网络协议,如HTTP/FTP/SMTP等简称"应用协议",他们运行在TCP/UDP之上,从Qt5开始,已经不再分别提供QHttp类,QFtp类,应用层的编程使用QNet ...

  10. Nordic SDK例程目录结构

    Nordic SDK例程目录结构为:SDK版本/ examples /协议角色/例子名称/开发板型号/协议栈型号/工具链类型/具体工程 Nordic每一个例子都支持5种工具链:Keil5/Keil4/ ...