luogu3978 [TJOI2015]概率论
题目链接:洛谷
题目大意:求所有$n$个点的有根二叉树的叶子节点数总和/$n$个点的有根二叉树的个数。
数据范围:$n\leq 10^9$
生成函数神题!!!!(我只是来水博客的)
首先$n$个点的有根二叉树的个数就是卡特兰数,我们考虑求分子。
设卡特兰数$g_i=\frac{C_{2n}^n}{n+1}$,分子是$f_i$则
$$f_n=2*\sum_{i=0}^{n-1}g_i*f_{n-i-1}(n\geq 2)$$
$$g_n=\sum_{i=0}^{n-1}g_i*g_{n-i-1}(n\geq 2)$$
$$f_0=0,f_1=g_0=g_1=1$$
设$f_i$和$g_i$的生成函数分别为$F(x),G(x)$则
$$G(x)=xG(x)^2+x$$
$$F(x)=2xF(x)G(x)+x$$
先解得
$$G(x)=\frac{1\pm\sqrt{1-4x}}{2x}$$
注意这里要用到一个技巧,就是当发现解出来有两个解的时候,我们可以代入特殊值。
我们发现$1=g_0=G(0)=\lim\limits_{x\rightarrow 0}\frac{1\pm\sqrt{1-4x}}{2x}$所以
$$G(x)=\frac{1-\sqrt{1-4x}}{2x}$$
代入第一个式子就可以得出
$$F(x)=\frac{x}{\sqrt{1-4x}}$$
因为我们知道$g_n$的通项公式,所以我们可以用生成函数来推出$f_n$
凑一下就知道是
$$(xG(x))'=(\frac{1-(1-4x)^{\frac{1}{2}}}{2})'=\frac{1}{\sqrt{1-4x}}=\frac{F(x)}{x}$$
然后就发现$G(x)$的其中一项$g_ix^i$经过运算后贡献到了$(i+1)g_ix^i$,$f_{i+1}x^{i+1}$贡献到了$f_{i+1}x^i$
所以$f_n=ng_{n-1}=C_{2n-2}^{n-1}$
所以
$$Ans=\frac{f_n}{g_n}=\frac{C_{2n-2}^{n-1}*(n+1)}{C_{2n}^n}=\frac{n(n+1)}{2(2n-1)}$$
(然后你就做完了别人打表做出来的东西)
不放代码了,这个只有8行。
luogu3978 [TJOI2015]概率论的更多相关文章
- 4001: [TJOI2015]概率论
4001: [TJOI2015]概率论 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 262 Solved: 108[Submit][Status] ...
- 【BZOJ4001】[TJOI2015]概率论(生成函数)
[BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...
- [TJOI2015]概率论
[TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n ...
- bzoj4001: [TJOI2015]概率论
题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点 ...
- P3978 [TJOI2015]概率论
\(\color{#0066ff}{ 题目描述 }\) 为了提高智商,ZJY开始学习概率论.有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的 ...
- 【BZOJ4001】【Luogu P3978】 [TJOI2015]概率论
题目描述: Description: Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Ou ...
- 【BZOJ】4001: [TJOI2015]概率论
题意 求节点数为\(n\)的有根树期望的叶子结点数.(\(n \le 10^9\)) 分析 神题就打表找规律.. 题解 方案数就是卡特兰数,$h_0=1, h_n = \sum_{i=0}^{n-1} ...
- BZOJ4001[TJOI2015]概率论——卡特兰数
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 提示 1<=N<=10^9 设 ...
- BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)
设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和.则答案为g(n)/f(n). 显然f(n)为卡特兰数.有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1). 类 ...
随机推荐
- Effective Java 第三版——74. 文档化每个方法抛出的所有异常
Tips 书中的源代码地址:https://github.com/jbloch/effective-java-3e-source-code 注意,书中的有些代码里方法是基于Java 9 API中的,所 ...
- python和C++联合调试
python可以利用SO的方式去调用C++中的函数,但是需要一种调试方案来进行python和C++的联合调试,效果是直接在c++代码中打断点,然后python在进行c++so调用的时候,直接进入到断点 ...
- BizTalk Schedule Adapter的使用
由于BizTalk作为一个消息中间件是无状态的,一般不能主动去触发消息.因此在有一些特定的场景,比如每隔X分钟/小时/天去轮询或获取数据时就会特别不方便.不过可以通过Codeplex上的开源项目:Bi ...
- maven创建helloword项目
[root@666 maven_work]# mvn archetype:create -DgroupId=helloword -DartifactId=helloworld [INFO] Scann ...
- Visual Studio编辑器“智能提示(IntelliSense)”异常的解决方案
1.删除工程中的 .suo 文件. 2.重启vs
- new和delete操作符
C 语言中提供了 malloc 和 free 两个系统函数, 完成对堆内存的申请和释放.而 C++则提供了两个操作符 new 和 delete. 1. newnew 分配内存空间时, 分配内存空间大 ...
- Hadoop 2.2.0安装和配置lzo
转自:http://www.iteblog.com/archives/992 Hadoop经常用于处理大量的数据,如果期间的输出数据.中间数据能压缩存储,对系统的I/O性能会有提升.综合考虑压缩.解压 ...
- c++ 条件变量
.条件变量创建 静态创建:pthread_cond_t cond=PTHREAD_COND_INITIALIZER; 动态创建:pthread_cond _t cond; pthread_cond_i ...
- <转>从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经 ...
- 【netcore基础】CentOS 7.6.1810 搭建.net core 2.1 linux 运行环境 nginx反向代理 supervisor配置自启动
之前写过一篇Ubuntu的环境搭建博客,感觉一些配置大同小异,这里重点记录下 nginx 作为静态 angular 项目文件服务器的配置 参考链接 [netcore基础]ubuntu 16.04 搭建 ...