$\min - \max$ 容斥

Part 1

对于简单的$\min - \max$容斥有一般形式,表达为:$\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1}\times \min(T)$

对于上述式子,可以简单的理解。

对于$S$中的每一项,其中的最大值为第$i$项

由于$|T|$非空,一共有$2^{|S|}-1$个$T$,其中,对于非最大值的任意一项,都包含至少一个比其大的元素

所以这些元素的选择情况构成了$2^{k}$幂,其中$|T|$的奇偶分布相同,所以相互抵消

而最大元素只有一个,所以会保留

显然对$\min(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1}\times \max(S)$同样成立

Part 2

有关推广

对于期望,该容斥同样成立

也就是说:$E(\max(S))=\sum\limits_{T\subseteq S}(-1)^{|T|-1}\times E(\min(T))$

具体证明是来自期望的线性性

我忘记了qwq

Part 3

$k\max-\min$容斥

对于每个元素在答案中的贡献显然为$[n-x+1=k]$

那么套上容斥系数:$[n-x+1=k]=\sum\limits_{i=0}^{n-x}C(n-x,i)\times f(i+1)$

也就是说:$[x+1=k]=\sum\limits_{i=0}^x C(x,i)\times f(i+1)$

这是个二项式反演没错了:$f(x+1)=\sum\limits_{i=0}^x (-1)^{x-i}\times C(x,i)\times [i=k-1]=(-1)^{x-k+1}\times C(x,k-1)$

然后化简:$f(x)=(-1)^{x-k}\times C(x-1,k-1)$

这是容斥系数qwq

那么就可以写出来:$k\max(S)=\sum\limits_{T\subseteq S} (-1)^{|T|-k}\times C(|T|-1,k-1)\times \min(S)$

Part 4

对于上述$k\max (S)$同样满足对期望成立...

所以就上例题了qwq

重返现世

你发现,这就是个板子qwq

$ans=\sum\limits_{S}(-1)^{|S|-k}\times C(|S|-1,k-1)\times \min(S)$

显然,对于$\min (S)=\frac{m}{\sum\limits_{x\in S}P_x}$

所以直接DP就好了qwq

min-max 容斥的更多相关文章

  1. Min-max 容斥与 kth 容斥

    期望的线性性: \[E(x+y)=E(x)+E(y) \] 证明: \[E(x+y)=\sum_i \sum_j(i+j)*P(i=x,j=y) \] \[=\sum_i\sum_ji*P(i=x,j ...

  2. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  3. UVa12633 Super Rooks on Chessboard(容斥 + FFT)

    题目 Source http://acm.hust.edu.cn/vjudge/problem/42145 Description Let’s assume there is a new chess ...

  4. hdu1695:数论+容斥

    题目大意: 求x属于[1,b]和 y属于[1,d]的 gcd(x,y)=k 的方案数 题解: 观察发现 gcd()=k 不好处理,想到将x=x/k,y=y/k 后 gcd(x,y)=1.. 即问题转化 ...

  5. [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演

    //待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...

  6. [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥

    题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...

  7. 【LOJ2542】【PKUWC 2018】随机游走 min-max容斥 树上高斯消元

    题目描述 有一棵 \(n\) 个点的树.你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...

  8. min-max容斥学习笔记

    min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{ ...

  9. min-max容斥 hdu 4336 && [BZOJ4036] 按位或

    题解: 之前听说过这个东西但没有学 令$max(S)$表示S中编号最大的元素,$min(S)$表示编号中最小的元素 $$max(S)=\sum{T \in S} {(-1)}^{|T|+1} min( ...

随机推荐

  1. React 入门学习笔记整理(二)—— JSX简介与语法

    先看下这段代码: import React from 'react'; //最终渲染需要调用ReactDOM库,将jsx渲染都页面中 import ReactDOM from 'react-dom'; ...

  2. sqlserver 2017 docker安装(启动代理)

    从 Docker Hub 中拉出 SQL Server 2017 Linux 容器映像. docker pull microsoft/mssql-server-linux:2017-latest 运行 ...

  3. 洗礼灵魂,修炼python(21)--自定义函数(2)—函数文档,doctest模块,形参,实参,默认参数,关键字参数,收集参数,位置参数

    函数文档 1.什么是函数文档: 就是放在函数体之前的一段说明,其本身是一段字符串,一个完整的函数需要带有函数文档,这样利于他人阅读,方便理解此函数的作用,能做什么运算 2.怎么查看函数文档: func ...

  4. Linux Regulator Framework(2)_regulator driver

    转自蜗窝科技:http://www.wowotech.net/pm_subsystem/regulator_driver.html 说实话,这篇好难懂啊... 1. 前言 本文从regulator d ...

  5. 使用zip压缩文件夹方法

    最近使用MapGis对.MPJ工程文件文件裁剪后,要对裁剪后的图形文件.ML,.MT,.MP,.MPJ文件打包,在网上找到7zip,Zlib的库,虽然都有源码,但是Zlib库中的使用没找到文件压缩的函 ...

  6. 【PAT】B1073 多选题常见计分法(20 分)

    此处为我的存储结构,只提供一种思路,二维数组存储所有数据 #include<stdio.h> #include<string.h> #include<map> #i ...

  7. 19LaTeX学习系列之---LaTeX的总结

    目录 目录 前言 (一)本系列的章节目录 (二)快速温习LaTeX 1.介绍 2.源文件结构 3.文档的结构 4.字体的设置 5.图片的插入 6.表格的插入 7.数学公式的插入 8.交叉引用与浮动体 ...

  8. January 14th, 2018 Week 02nd Sunday

    Embrace your life, for we only live once. 拥抱你的生活,因为我们只能活一次. We just live once, so I would rather liv ...

  9. Jersey常用注解解释 @DET、@PUT、@POST 、@DELETE等

    uri : ... /resource/{id} public voide method(@PathParam("id") String userId){} uri :  .../ ...

  10. Spring容器技术内幕之内部工作机制

    引言 Spring容器就像一台构造精妙的机器,我们通过配置文件向机器传达控制信息,机器就能够按照设定的模式工作.如果将Spring容器比作一辆车,那么可以将BeanFactory看成汽车的发动机,而A ...