1. tensorflow工作流程

如官网所示:
根据整体架构或者代码功能可以分为:

图1.1 tensorflow架构
如图所示,一层C的api接口将底层的核运行时部分与顶层的多语言接口分离开。
而根据整个的工作流程,又可以分为:

图1.2 不同系统组件之间的交互
而图1.2也是tensorflow整个工作的流程,其中主要分为四个部分:

1.1. 客户端client

  • 将整个计算过程转义成一个数据流graph
  • 通过session,将graph传递给master执行

ps:假设我们使用的是python作为客户端,则其中session文件在Anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py

1.2. 分布式主节点Distributed Master

  • 基于用户传递给Session.run()中的参数来进行修剪整个完整的graph,提取其中特定subgraph;
  • 将上述subgraph划分成不同部分,并将其对应不同的进程和devices中;
  • 将上述划分的部分分布到worker services上;
  • 每个worker services执行其收到的graph块

1.3. 工作节点的服务Worker Services (one for each task)

  • 使用可用的硬件kernel(如cpu,gpu)计划执行接收到的graph块表示的计算部分;
  • 与其他work services相互发送和接收计算结果

1.4. 核的实现Kernel Implementations

  • 执行graph操作的计算部分

现在回到图1.2。其中的"/job:worker/task:0" 和"/job:ps/task:0" ,都是worker services上执行的任务。

  • "PS"表示parameter server:一个task负责存储和更新模型的参数
  • 其他worker会发送他们迭代优化的参数给PS。

当然如果在单机环境下,上述PS和worker不是必须的,不过如果是分布式训练,这种模式就很常见了。而且上述的 "Distributed Master","Worker Service"只存在于分布式tensorflow中,对于单进程的tensorflow(也就是单机版),一个特定的session就负责了Distributed Master的任何事情,且其自己负责本机的多进程或者说多devices之间的数据交互。

下面,通过一个graph例子详细的介绍下tensorflow的核心模块。

2 client

用户负责在client端编写tensorflow代码,以此行程一个计算graph。该程序可以直接通过底层API组成(如自己写每一层,每一个激活函数),或者使用google提供的如Estimators API等高阶API来完成整个NN的搭建。同时Tensorflow支持多种client端的语言,如Python,CPP。当然随着tensorflow本身的趋于完善,CPP的接口也会越来越多,用于提供更快速的执行效率,当然python接口还是最全的。

client创建一个session,该会话会将graph的定义通过一个tf.GraphDefprotocol buffer 发送给distributed master。当在run中指定了某个graph中的node或者某些nodes,该函数会触发distributed master 去执行所需要的计算。
假如我们的graph如图2.1,就是一个\[s+= wx+b\]

图2.1 基于client端建立的graph

ps:tf.Session

3 Distributed master

该部分的主要工作为:

  • 基于client在run中指定的节点,从整个完整的graph中截取所需要的subgraph;
  • 将subgraph进一步划分成多个pieces,使其可以将每个piece映射到不同的执行设备上;
  • 将划分好的pieces缓存起来,以备后面的其他run的触发。

因为一旦到了master的部分,master可以总揽整个graph,所以它可以使用标准的优化方法去做优化,如公共子表达式消除(common subexpression elimination )和常量的绑定。然后给优化后的subgraphs或者说pieces定义不同的坐标,每个坐标对应了不同的执行设备如"/job:worker/task:0" 和"/job:ps/task:0"


图3.1 client通过运行run,将graph发送给master

图3.2 master将所需要执行的subgraph划分成参数更新和迭代优化两部分

图3.1 master在划分好的subgraph上添加所需要的发送和接收接口,为真实任务分发做准备

图3.1 master将每个piece通过分布式task分发到真实的节点去运行

Ps:MasterService API definition
Master interface

4 Worker Service

在每个task中,该部分负责:

  • 处理从master发来的请求;
  • 基于接收到的subgraph,规划所需要执行的kernels;
  • 与其他task直接进行消息交换

google优化了该部分,使其就算面对large graph,其负载也很低。当前的版本可以执行每秒上万个subgraphs,这使得大量副本可以进行快速的,细粒度的训练。该部分会将所需要执行的kernels指派给本地的devices,并尽可能的并行执行kernels。例如使用多CPU核或者多GPU流。

该部分还负责具体化源和目标device的Send和Recv操作:

  • 使用cudaMemcpAsync()来进行本地CPU和GPU设备之间的数据传输操作;
  • 使用点对点的DMA进行GPU之间的传输,以避免需要通过host CPU主内存进行数据传输的高代价

为了在tasks之间进行传输,tensorflow使用多种协议:

  • 基于TCP的gRPC;
  • 基于Converged Ethernet的RDMA

同时tensorflow也支持NVIDIA的NCCL库来为多GPU之间进行数据交互(tf.contrib.nccl)

图4.1 worker端接收到的piece;对应的接收发送接口;task之间的交互
ps:WorkerService API definition
Worker interface
Remote rendezvous (for Send and Recv implementations)

5 Kernel Implementations

该运行时包含了超过200个标准操作,其中涉及数学,数组,控制流,和状态管理等操作。每个操作都有对应不同devices的优化后的实现。其中许多kernel是通过使用了CPP的模版的Eigen:Tensor去实现的,主要是为了能生成可以在多CPU和多GPU上运行的高效并行代码。不过如果cuDNN中已经实现了一些kernel,那么就用cuDNN的接口。同时google还实现了quantization,可以更快速的基于移动设备和高吞吐量的数据中心应用进行inference,并且可以使用低精确度的gemmlowp用于加速量化计算。

如果用户发现很难去将子计算组合成一个大计算,或者说组合后发现效率很低,那么用户可以通过注册额外的cpp编写的kernel来提供一个新的接口。例如,可以自己将一些性能敏感的操作如ReLU和Sigmoid等函数(或者其对应的梯度等)进行融合。XLA提供了一个实验性质的自动kernel融合实现

ps:OpKernel interface

参考资料:

Tensorflow[架构流程]的更多相关文章

  1. 『TensorFlow』流程控制

    『PyTorch』第六弹_最小二乘法对比PyTorch和TensorFlow TensorFlow 控制流程操作 TensorFlow 提供了几个操作和类,您可以使用它们来控制操作的执行并向图中添加条 ...

  2. TensorFlow架构与设计:概述

    TensorFlow是什么? TensorFlow基于数据流图,用于大规模分布式数值计算的开源框架.节点表示某种抽象的计算,边表示节点之间相互联系的张量. TensorFlow支持各种异构的平台,支持 ...

  3. 一:SpringMVC架构流程

    架构流程: 1.用户发送请求至前端控制器DispatcherServlet 2.DispatcherServlet收到请求调用HandlerMapping处理器映射器. 3.处理器映射器根据请求url ...

  4. 『TensorFlow』流程控制之tf.identity

    一个详细介绍 下面程序要做的是,5次循环,每次循环给x加1,赋值给y,然后打印出来, x = tf.Variable(0.0) #返回一个op,表示给变量x加1的操作 x_plus_1 = tf.as ...

  5. MyBatis原理-架构流程

    一 .MyBatis原理架构图 Mybatis的功能架构分为三层: API接口层:提供给外部使用的接口API,开发人员通过这些本地API来操纵数据库.接口层一接收到调用请求就会调用数据处理层来完成具体 ...

  6. MyBatis(十一):MyBatis架构流程浅析

    架构分层 我们将MyBatis架构分为三层,分别为接口层.数据处理层和框架支撑层 接口层:提供外部接口调用的API,使用端通过这些API来操作数据库,接口层收到请求后会调用数据处理层完成具体的数据处理 ...

  7. TensorFlow架构学习

    0 - TensorFlow 基于数据流图,节点表示某种抽象计算,边表示节点之间联系的张量. Tensorflow结构灵活,能够支持各种网络模型,有良好的通用性和扩展性. 1 - 系统概述 Tenso ...

  8. 实现 TensorFlow 架构的规模性和灵活性

    TensorFlow https://mp.weixin.qq.com/s/tEyX596WXTzsABXaeTesug

  9. Struts2架构流程

    [Struts2] Action实现. interceptor实现. Filter工作原理. 使用 拦截器来处理请求. 业务逻辑控制器与 Servlet API分离. ================ ...

随机推荐

  1. PATH、CLASSPATH、CLASSPATH

    PATH: 说明: 环境变量中的path,意在在向计算机发出指令时的一个指向路径,如 一般会在path里加上:%JAVA_HOME%\bin;%JAVA_HOME%\jre\bin 其中:%JAVA_ ...

  2. BUGList

    Django : a. MySQL数据表还未创建时,不可在视图内直接使用模型类对象,产生报错 django.db.utils.ProgrammingError: (1146, "Table ...

  3. vue 父子组件互相传值容易出现的报错

    对于父子组件之间的互相传值,报错如下: [Vue warn]: Avoid mutating a prop directly since the value will be overwritten w ...

  4. IDEA项目搭建七——使用Feign简化消费者端操作

    一.简介 我们可以看到上一篇文章的消费者这边调用Service时比较麻烦,所以我们可以使用Feign来简化这部分操作,它底层也是使用Ribbon实现的只是Ribbon支持HTTP和TCP两种通信协议, ...

  5. Landsat8 卫星数据下载

    具体参考    https://www.ixxin.cn/2016/11/27/landsat8freedata/

  6. android 事件反拦截

    有一种方法可以阻止父层的View截获touch事件,就是调用 getParent().requestDisallowInterceptTouchEvent(true);方法.一旦底层View收到tou ...

  7. (网页)人人都会的35个Jquery小技巧

    转自CSDN: 收集的35个 jQuery 小技巧/代码片段,可以帮你快速开发. 1. 禁止右键点击 $(document).ready(function(){ $(document).bind(&q ...

  8. centos6启动服务说明

    centos6启动服务说明 阅读目录 centos6.9最小化安装下的启动服务 其他服务(仅供参考,持续更新) 此表转自:参考1.参考2.另有多处补充及纠正. 1. centos6.9最小化安装下的启 ...

  9. pip更新及Requirement already up-to-date解决方法

    pip更新及Requirement already up-to-date解决方法 文:铁乐与猫 2018-9-11 更新命令 将pip更新到最新版本 python -m pip install --u ...

  10. Eclipse 报错The method xxx of type must override a superclass method、Description Resource Path Location Type Java compiler level does not match the version of the installed Java project facet

    问题: 如上图, 没改钱@Override会报错The method run() of type must override a superclass method 原因: java1.5中继承接口是 ...