Bumped!【最短路】(神坑
问题 B: Bumped!
时间限制: 1 Sec 内存限制: 128 MB
提交: 351 解决: 44
[提交] [状态] [命题人:admin]
题目描述
Peter returned from the recently held ACM ICPC World finals only to find that his return flight was overbooked and he was bumped from the flight! Well, at least he wasn’t beat up by the
airline and he’s received a voucher for one free flight between any two destinations he wishes.
He is already planning next year’s trip. He plans to travel by car where necessary, but he may be using his free flight ticket for one leg of the trip. He asked for your help in his planning.
He can provide you a network of cities connected by roads, the amount it costs to buy gas for traveling between pairs of cities, and a list of available flights between some of those cities. Help Peter by finding the minimum amount of money he needs to spend to get from his hometown to next year’s destination!
输入
The input consists of a single test case. The first line lists five space-separated integers n, m, f, s, and t, denoting the number of cities n (0 < n ≤ 50 000), the number of roads m (0 ≤ m ≤ 150 000), the number of flights f (0 ≤ f ≤ 1 000), the number s (0 ≤ s < n) of the city in which Peter’s trip starts, and the number t (0 ≤ t < n) of the city Peter is trying to travel to. (Cities are numbered from 0 to n − 1.)
The first line is followed by m lines, each describing one road. A road description contains three space-separated integers i, j, and c (0 ≤ i, j < n, i 6= j and 0 < c ≤ 50 000), indicating there is a road connecting cities i and j that costs c cents to travel. Roads can be used in either direction for the same cost. All road descriptions are unique.
Each of the following f lines contains a description of an available flight, which consists of two space-separated integers u and v (0 ≤ u, v < n, u 6= v) denoting that a flight from city u to city v is available (though not from v to u unless listed elsewhere). All flight descriptions are unique.
输出
Output the minimum number of cents Peter needs to spend to get from his home town to the competition,using at most one flight. You may assume that there is a route on which Peter can reach his destination.
样例输入
8 11 1 0 5
0 1 10
0 2 10
1 2 10
2 6 40
6 7 10
5 6 10
3 5 15
3 6 40
3 4 20
1 4 20
1 3 20
4 7
样例输出
45
题意:n个点,m条边,f条飞行路线,s起始点,t终点
其中f条飞行路线可以使一条边的距离为0;
这题很坑,相当坑,有如下几点
1. 不管f有多少条 ,只能选一条 ,所以我们枚举每一条f边为0,去求最短路;
2. 如果f=0,别直接不跑了
3. 数据范围是long long ,如果初始化为INF 就会WA!! 太坑了! 改成9999999999或更多(在此WA了几百发,留下惨痛教训)
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define mp make_pair
#define rep(i,a,n) for(int i=a;i<n;++i)
#define readc(x) scanf("%c",&x)
#define read(x) scanf("%d",&x)
#define sca(x) scanf("%d",&x)
#define read2(x,y) scanf("%d%d",&x,&y)
#define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define print(x) printf("%d\n",x)
#define mst(a,b) memset(a,b,sizeof(a))
#define lowbit(x) x&-x
#define lson(x) x<<1
#define rson(x) x<<1|1
#define pb push_back
#define mp make_pair
typedef long long ll;
typedef pair<ll,ll> P;
const int INF =0x3f3f3f3f;
const int inf =0x3f3f3f3f;
const int mod = 1e9+7;
const int MAXN = 105;
const int maxn =1000010;
using namespace std;
struct node{
ll to;
ll cost;
bool operator < (node b)const{
return cost > b.cost;
}
};
struct edge{
ll to;
ll cost;
};
vector<edge> E[maxn];
int vis[maxn];
ll dis[maxn];
priority_queue<node>q;
ll x,y,z;
ll n,m,f,st,ed;
void Dijkstra(ll s){
memset(vis,0,sizeof vis);
for(int i = 0; i < n; i++)
dis[i] = 9999999999;
while(!q.empty())
q.pop();
dis[s] = 0;
q.push(node{s,0});
node tmp;
while(!q.empty()){
tmp = q.top();
q.pop();
ll u = tmp.to;
if(vis[u])
continue;
vis[u] = 1;
for(int i = 0; i < E[u].size(); i++){
ll v = E[u][i].to;
ll w = E[u][i].cost;
if(!vis[v] && dis[v] > dis[u] + w){
dis[v] = dis[u] + w;
q.push(node{v,dis[v]});
}
}
}
}
int main(){
scanf("%lld%lld%lld%lld%lld",&n,&m,&f,&st,&ed);
while(m--){
scanf("%lld%lld%lld",&x,&y,&z);
E[x].pb(edge{y,z});
E[y].pb(edge{x,z});
}
ll ans = 9999999999;
Dijkstra(st);
ans = dis[ed];
while(f--){
scanf("%lld%lld",&x,&y);
E[x].pb(edge{y,0});
Dijkstra(st);
ans = min(ans,dis[ed]) ;
E[x].erase(E[x].end() - 1);
}
printf("%lld\n",ans);
return 0;
}
/*
6 7 2 0 5
0 1 10
0 3 5
1 4 10
2 3 5
0 5 100
4 5 5
2 5 5
0 2
1 3
*/
Bumped!【最短路】(神坑的更多相关文章
- upc组队赛6 Bumped!【最短路】
Bumped! 题目描述 Peter returned from the recently held ACM ICPC World finals only to find that his retur ...
- Bumped! 2017 ICPC North American Qualifier Contest (分层建图+dijstra)
题目描述 Peter returned from the recently held ACM ICPC World finals only to find that his return flight ...
- POJ-2387Til the Cows Come Home,最短路坑题,dijkstra+队列优化
Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K http://poj.org/problem?id=238 ...
- Bumped!【迪杰斯特拉消边、堆优化】
Bumped! 题目链接(点击) Peter returned from the recently held ACM ICPC World Finals only to find that his r ...
- 【译】Unity3D Shader 新手教程(5/6) —— Bumped Diffuse Shader
本文为翻译,附上原文链接. 转载请注明出处--polobymulberry-博客园. 动机 如果你满足以下条件,我建议你阅读这篇教程: 你想学习片段着色器(Fragment Shader). 你想实现 ...
- bzoj1001--最大流转最短路
http://www.lydsy.com/JudgeOnline/problem.php?id=1001 思路:这应该算是经典的最大流求最小割吧.不过题目中n,m<=1000,用最大流会TLE, ...
- 【USACO 3.2】Sweet Butter(最短路)
题意 一个联通图里给定若干个点,求他们到某点距离之和的最小值. 题解 枚举到的某点,然后优先队列优化的dijkstra求最短路,把给定的点到其的最短路加起来,更新最小值.复杂度是\(O(NElogE) ...
- Sicily 1031: Campus (最短路)
这是一道典型的最短路问题,直接用Dijkstra算法便可求解,主要是需要考虑输入的点是不是在已给出的地图中,具体看代码 #include<bits/stdc++.h> #define MA ...
- 最短路(Floyd)
关于最短的先记下了 Floyd算法: 1.比较精简准确的关于Floyd思想的表达:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B.所以,我们假设maz ...
随机推荐
- VMPlayer Ubuntu 16.04 Copy and Paste with Host 主机与宿机之间的复制粘贴
使用Ubuntu的虚拟机时如果不能主机之间进行复制粘粘,会非常非常的不方便,所以我们需要安装vmware tools,使用如下的代码(注意第二句一定要有,不然还是不能复制粘贴): sudo apt-g ...
- centos 安装 python36
centos6 安装 python36 临时方法: https://www.softwarecollections.org/en/scls/rhscl/rh-python36/ 方法二: http:/ ...
- 关于vue-cli创建项目(小白)
vue-cli,都说是vue脚手架,一般cli是命令行的意思,一看就知道与node有关,其实脚手架是建筑工用的工具,给工人踩在上面干活的,这里借用它的意思,我觉得应该叫vue平台工具大家更容易懂,毕竟 ...
- CString数组和CStringArray
CStringArray是编译器定义的类型!可以进行一些(如:访问.增.删.改)等操作. 集中单个字符串的操作使用Cstring,集中一批字符串的管理使用CstringArray. 一个是动态,CSt ...
- SQL 资源整理
https://linux.linuxidc.com/index.php 资源链接:linux.linuxidc.com SQL必知必会(第4版)是SQL经典畅销书,内容丰富,简洁实用.本书是麻省理工 ...
- Oracle课程档案,第七天
数据库管理 关闭数据库有4中方式: 1.shutdown modes 关机模式 2.shutdown normal 关机正常 3.shutdown immediate 立即关闭 ★★ 常用命令 4.s ...
- Java8 新特性之流式数据处理
一. 流式处理简介 在我接触到java8流式处理的时候,我的第一感觉是流式处理让集合操作变得简洁了许多,通常我们需要多行代码才能完成的操作,借助于流式处理可以在一行中实现.比如我们希望对一个包含整数的 ...
- myEclipse导入现成项目出现错误 【申明来源于网络】
myEclipse导入现成项目出现错误 [申明来源于网络] 原地址:http://blog.sina.com.cn/s/blog_6d7703400100znh6.html file–>impo ...
- java 软件安装
myeclipse 2014 安装 https://www.cnblogs.com/plus301/articles/5633540.html
- Win7-IE11 For x86&x64离线安装包
一.Internet Explorer11简体中文版离线安装包: 微软已停止了IE11以下版本(包括IE10/9/8)的技术支持.以后Win7用IE11的机会也越来越多,但IE11官方安装 ...