STATS 326 Applied Time Series
STATS 326
Applied Time Series
ASSIGNMENT THREE
Due: 2 May 2019, 11.00 am
(Worth 6% of your final grade)
Hand-in to the appropriate STATS 326 Hand-in box in the Student Resource Centre
This assignment will be marked out of 100. Please follow the instructions carefully. Marks
will be deducted if you include R output, plots etc that are not asked for. Only include what is
requested in each question in your answers. You are encouraged to print your assignment “2-
up” to save paper.
STATS 326作业代写、R实验作业代做、代写R编程设计作业、代做Applied Time Series作业
The data for this assignment is the same as the data used in Assignment Two.
NOTE: Given what was found in Assignment Two with respect to the variables needed for
the best predicting Seasonally Adjusted model of the CO2 Concentration data, you
should be able to fit appropriate final models (without going through any model
building steps) for Questions One and Two.
Question One: [20 marks]
Build a Seasonal Factor model of the data (2000 to 2016). See pages 90 – 96 of the Course
Notes. Calculate predictions for the 4 quarters of 2017 using your final model. Compare the
model’s forecasts with the actual values for 2017.
In your assignment only include the following for the best predicting Seasonal Factor
model: the R summary output for the best predicting model, the R commands and output
used to do the predictions and the R commands and output used to compare the predictions
with the actual values for 2017. Briefly comment on the model.
Question Two: [25 marks]
Find the best predicting Harmonic model of the data (2000 to 2016). See pages 97 – 114 of
the Course Notes.
In your assignment only include the following for the best predicting Harmonic model: the
R summary output for the best predicting model, the R commands and output used to do the
predictions and the R commands and output used to compare the predictions with the actual
values for 2017. Briefly comment on the best predicting model. Briefly discuss the other
Harmonic models that you tried and briefly ex-plain why they were rejected.
For Questions Three and Four, use the best predicting model from Questions One and
Two.
Question Three: [30 marks]
Write up a brief set of Technical Notes for the best predicting model. You do not need to
discuss any model building steps. You should also discuss the predictions and their
reliability.
Question Four: [20 marks]
Re-run the best predicting model using all the available data (2000 to 2017) and do
predictions for the 4 quarters of 2018. You are not required to do any model building in this
question. Just use the best predicting model from Questions One and Two.
In your assignment only include the R commands and output for the best predicting model
and the R commands and output for the 2018 predictions. Briefly comment on the model.
Question Five: [5 marks]
Which is the best predicting model from Assignments Two and Three? Justify your choice.
因为专业,所以值得信赖。如有需要,请加QQ:99515681 或邮箱:99515681@qq.com
微信:codinghelp
STATS 326 Applied Time Series的更多相关文章
- Python数据分析之pandas学习
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...
- python 数据分析--pandas
接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析 ...
- 学机器学习,不会数据处理怎么行?—— 二、Pandas详解
在上篇文章学机器学习,不会数据处理怎么行?—— 一.NumPy详解中,介绍了NumPy的一些基本内容,以及使用方法,在这篇文章中,将接着介绍另一模块——Pandas.(本文所用代码在这里) Panda ...
- (转)Awesome Object Detection
Awesome Object Detection 2018-08-10 09:30:40 This blog is copied from: https://github.com/amusi/awes ...
- pandas2
1.Series创建的方法统一为pd.Series(data,index=)(1,2,3)Series可以通过三种形式创建:python的dict.numpy当中的ndarray(numpy中的基本数 ...
- Python数据分析之pandas
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...
- Game Engine Architecture 13
[Game Engine Architecture 13] 1.describe an arbitrary signal x[n] as a linear combination of unit im ...
- psu online course
https://onlinecourses.science.psu.edu/statprogram/programs Graduate Online Course Overviews Printer- ...
- An overview of time series forecasting models
An overview of time series forecasting models 2019-10-04 09:47:05 This blog is from: https://towards ...
随机推荐
- hdu 2899
mxy终于学会求函数极值了. 先写一道板子. #include <bits/stdc++.h> using namespace std; typedef double db; ; cons ...
- Maven项目出现Perhaps you are running on a JRE rather than a JDK?
今天 换了一个IDE 然后 运行 maven的时候 报了一个 这个 错误 我记得以前 我遇到过 所以 把解决方法 记下来吧 原因 maven插件需要使用jdk 的 但是 eclipse默认 ...
- mybatis05--多条件的查询
public interface StudentDao { /** * 前台的表单给出的查询条件不能封装成一个对象的时候 * 查询只能是多个参数了! 也就是参数不全是Student中的属性! * 这时 ...
- oracle 字符转换成数字
1>函数转换 select nvl2(translate(a.data, '\1234567890.', '\'), null, a.data) n, a.data from rpt_detai ...
- mac 初次配置apache,及mac下安装mysql
先打开apache,在浏览器上输入 localhost 回车后会如果屏幕上显示:It works! 如下图: 这说明你的apache已开启 mac 下apache配置(mac自带apache ...
- ubantu中怎样安装VMware Tools
点击虚拟机选择安装VMware tools tar zxvf VMwareTools-9.6.0-1294478.tar.gz -C /root/(安装到的目录)cd /root/cd vmware- ...
- 深入学习C#匿名函数、委托、Lambda表达式、表达式树类型——Expression tree types
匿名函数 匿名函数(Anonymous Function)是表示“内联”方法定义的表达式.匿名函数本身及其内部没有值或者类型,但是可以转换为兼容的委托或者表达式树类型(了解详情).匿名函数转换的计算取 ...
- CORS jsonp
现在碰到了请求跨域的问题,结合前面讲的一些概念,我们大致可以猜到解决跨域请求的两种方式: 在服务端启用CORS.让无服务端拥有处理JSONP的能力.这两种跨域解决方案的区别是什么呢? JSONP只支持 ...
- [qemu][kvm] 在kvm嵌套kvm的虚拟机里启动kvm加速
常规情况下,如果在kvm的虚拟机里,又想使用kvm的虚拟机,会报如下的错误信息: [root@host0 nlb]# Could not access KVM kernel module: No su ...
- 苹果审核被拒,解析奔溃日志.txt转crash文件
1. 桌面新建一个文件夹,用来存放crash相关的东西.取名crash 2.下载苹果官方邮件里给的后缀名为 .txt 的被拒附件(这三个txt格式文件为苹果返回的崩溃日志文件),把这三个文件放在刚新建 ...