STATS 326
Applied Time Series
ASSIGNMENT THREE
Due: 2 May 2019, 11.00 am
(Worth 6% of your final grade)
Hand-in to the appropriate STATS 326 Hand-in box in the Student Resource Centre
This assignment will be marked out of 100. Please follow the instructions carefully. Marks
will be deducted if you include R output, plots etc that are not asked for. Only include what is
requested in each question in your answers. You are encouraged to print your assignment “2-
up” to save paper.

STATS 326作业代写、R实验作业代做、代写R编程设计作业、代做Applied Time Series作业
The data for this assignment is the same as the data used in Assignment Two.
NOTE: Given what was found in Assignment Two with respect to the variables needed for
the best predicting Seasonally Adjusted model of the CO2 Concentration data, you
should be able to fit appropriate final models (without going through any model
building steps) for Questions One and Two.
Question One: [20 marks]
Build a Seasonal Factor model of the data (2000 to 2016). See pages 90 – 96 of the Course
Notes. Calculate predictions for the 4 quarters of 2017 using your final model. Compare the
model’s forecasts with the actual values for 2017.
In your assignment only include the following for the best predicting Seasonal Factor
model: the R summary output for the best predicting model, the R commands and output
used to do the predictions and the R commands and output used to compare the predictions
with the actual values for 2017. Briefly comment on the model.
Question Two: [25 marks]
Find the best predicting Harmonic model of the data (2000 to 2016). See pages 97 – 114 of
the Course Notes.
In your assignment only include the following for the best predicting Harmonic model: the
R summary output for the best predicting model, the R commands and output used to do the
predictions and the R commands and output used to compare the predictions with the actual
values for 2017. Briefly comment on the best predicting model. Briefly discuss the other
Harmonic models that you tried and briefly ex-plain why they were rejected.
For Questions Three and Four, use the best predicting model from Questions One and
Two.
Question Three: [30 marks]
Write up a brief set of Technical Notes for the best predicting model. You do not need to
discuss any model building steps. You should also discuss the predictions and their
reliability.
Question Four: [20 marks]
Re-run the best predicting model using all the available data (2000 to 2017) and do
predictions for the 4 quarters of 2018. You are not required to do any model building in this
question. Just use the best predicting model from Questions One and Two.
In your assignment only include the R commands and output for the best predicting model
and the R commands and output for the 2018 predictions. Briefly comment on the model.
Question Five: [5 marks]
Which is the best predicting model from Assignments Two and Three? Justify your choice.

因为专业,所以值得信赖。如有需要,请加QQ:99515681 或邮箱:99515681@qq.com

微信:codinghelp

STATS 326 Applied Time Series的更多相关文章

  1. Python数据分析之pandas学习

    Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...

  2. python 数据分析--pandas

    接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析 ...

  3. 学机器学习,不会数据处理怎么行?—— 二、Pandas详解

    在上篇文章学机器学习,不会数据处理怎么行?—— 一.NumPy详解中,介绍了NumPy的一些基本内容,以及使用方法,在这篇文章中,将接着介绍另一模块——Pandas.(本文所用代码在这里) Panda ...

  4. (转)Awesome Object Detection

    Awesome Object Detection 2018-08-10 09:30:40 This blog is copied from: https://github.com/amusi/awes ...

  5. pandas2

    1.Series创建的方法统一为pd.Series(data,index=)(1,2,3)Series可以通过三种形式创建:python的dict.numpy当中的ndarray(numpy中的基本数 ...

  6. Python数据分析之pandas

    Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...

  7. Game Engine Architecture 13

    [Game Engine Architecture 13] 1.describe an arbitrary signal x[n] as a linear combination of unit im ...

  8. psu online course

    https://onlinecourses.science.psu.edu/statprogram/programs Graduate Online Course Overviews Printer- ...

  9. An overview of time series forecasting models

    An overview of time series forecasting models 2019-10-04 09:47:05 This blog is from: https://towards ...

随机推荐

  1. Ext-JS-Modern-Demo 面向移动端示例

    基于Ext Js 6.5.2 面向移动端示例,低于此版本可能存在兼容问题,慎用 已忽略编译目录,请自行编译运行 Sencha Cmd 版本:v6.5.2.15 git地址:https://github ...

  2. SQLite可视化工具SQLite studio

    特点: 1.轻量级2.独立性,没有依赖,无需安装3.隔离性 全部在一个文件夹系统4.跨平台 支持众多操作系统5.多语言接口 支持众多编程语言6.安全性 事物,通过独占性和共享锁来实现独立事务的处理,多 ...

  3. PHP函数之dirname()

    1. 定义和用法 dirname()函数返回路径中的目录部分.即返回去掉文件名后的目录名. 2. 参数 dirname(path): 参数 path是一个包含有指向一个文件的全路径的字符串. 3. 举 ...

  4. sublime3 快速运行 java

    build 系统 Java.sublime-build { "cmd": ["javac $file_name && java $file_base_na ...

  5. vue脚手架---vue-cli

    开年第一篇 今天先讲一讲 vue-cli的安装 npm install vue-cli 可能需要很多的时间视网络环境而定, 如果长时间等待 也可以试试使用淘宝的镜像(cnpm)安装( npm inst ...

  6. kafka的一些参数

    参考文档: https://blog.csdn.net/fengzheku/article/details/50585972 http://kafka.apache.org/documentation ...

  7. 转载http协议

    转载自:https://blog.csdn.net/weixin_38051694/article/details/77777010 1.说一下什么是Http协议 对器客户端和 服务器端之间数据传输的 ...

  8. PAT甲级1026 Table Tennis【模拟好题】

    题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805472333250560 题意: 有k张乒乓球桌,有的是vip桌 ...

  9. 线程同步-SpinWait

    这次将描述如何不适用内核模式的方式来使线程等待.SpinWait,它是一个混合同步构造,被设计为使用用户模式等待一段时间,然后切换到内核模式以节省CPU时间. 代码Demo: using System ...

  10. springmvc.xml 中 <url-pattern></url-pattern>节点详解

    1.  先来上段常见的代码 <!-- MVC Servlet --> <servlet> <servlet-name>springServlet</servl ...