传送门

题意简述:你要从(0,0)(0,0)(0,0)走到(ex,ey)(ex,ey)(ex,ey),每次可以从(x,y)(x,y)(x,y)走到(x+ax,y+ay)(x+ax,y+ay)(x+ax,y+ay)或者(x+bx,y+by)(x+bx,y+by)(x+bx,y+by),其中有nnn个障碍点问方案数,所有出现的值的绝对值≤500\le500≤500


思路:从(0,0)(0,0)(0,0)到每个障碍点需要用几次(x+ax,y+ay)(x+ax,y+ay)(x+ax,y+ay)和几次(x+bx,y+by)(x+bx,y+by)(x+bx,y+by)是可以直接算出来的,我们把这两个算出来的参数看成新的横纵坐标,然后在上面做常规的棋盘问题容斥dpdpdp即可。

代码:

#include<bits/stdc++.h>
#define ri register int
#define fi first
#define se second
using namespace std;
inline int read(){
	int ans=0,w=1;
	char ch=getchar();
	while(!isdigit(ch)){if(ch=='-')w=-1;ch=getchar();}
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans*w;
}
typedef pair<int,int> pii;
typedef long long ll;
const int mod=1e9+7,N=505;
inline int add(const int&a,const int&b){return a+b>=mod?a+b-mod:a+b;}
inline int dec(const int&a,const int&b){return a>=b?a-b:a-b+mod;}
inline int mul(const int&a,const int&b){return (ll)a*b%mod;}
int ex,ey,n,ax,ay,bx,by,tot=0,f[N],lim;
vector<int>fac,ifac;
pii p[N],up;
inline pii calc(int x,int y){
	int t1=ax*by-bx*ay,t2=x*by-y*bx,A=-1,B=-1;
	if(t2%t1==0)A=t2/t1;
	t1=bx*ay-ax*by,t2=x*ay-y*ax;
	if(t2%t1==0)B=t2/t1;
	return pii(A,B);
}
inline void init(){
	fac.resize(lim+5),ifac.resize(lim+5);
	fac[0]=fac[1]=ifac[0]=ifac[1]=1;
	for(ri i=2;i<=lim;++i)fac[i]=mul(fac[i-1],i),ifac[i]=mul(ifac[mod%i],mod-mod/i);
	for(ri i=2;i<=lim;++i)ifac[i]=mul(ifac[i-1],ifac[i]);
}
inline int C(const int&a,const int&b){return a>=b?mul(mul(fac[a],ifac[b]),ifac[a-b]):0;}
int main(){
	ex=read(),ey=read(),n=read(),ax=read(),ay=read(),bx=read(),by=read();
	p[tot=1]=up=calc(ex,ey);
	if(up.fi<0||up.se<0)return puts("0"),0;
	for(ri i=1,x,y;i<=n;++i){
		x=read(),y=read();
		pii tmp=calc(x,y);
		if(tmp.fi>=0&&tmp.se>=0&&tmp.fi<=up.fi&&tmp.se<=up.se)p[++tot]=tmp;
	}
	sort(p+1,p+tot+1),n=unique(p+1,p+tot+1)-p-1;
	for(ri i=1;i<=n;++i)lim=max(lim,p[i].fi+p[i].se);
	init();
	for(ri i=1;i<=n;++i){
		f[i]=C(p[i].fi+p[i].se,p[i].fi);
		for(ri j=1;j<i;++j)f[i]=dec(f[i],mul(f[j],C(p[i].fi+p[i].se-p[j].fi-p[j].se,p[i].fi-p[j].fi)));
	}
	cout<<f[n];
	return 0;
}

2019.02.11 bzoj4767: 两双手(组合数学+容斥dp)的更多相关文章

  1. BZOJ.4767.两双手(组合 容斥 DP)

    题目链接 \(Description\) 棋盘上\((0,0)\)处有一个棋子.棋子只有两种走法,分别对应向量\((A_x,A_y),(B_x,B_y)\).同时棋盘上有\(n\)个障碍点\((x_i ...

  2. bzoj 4767: 两双手 组合 容斥

    题目链接 bzoj4767: 两双手 题解 不共线向量构成一组基底 对于每个点\((X,Y)\)构成的向量拆分 也就是对于方程组 $Ax * x + Bx * y = X $ \(Ay * x + B ...

  3. HDU 5794 A Simple Chess (容斥+DP+Lucas)

    A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...

  4. [CF1086E]Beautiful Matrix(容斥+DP+树状数组)

    给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...

  5. 【BZOJ3622】已经没有什么好害怕的了 容斥+DP

    [BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...

  6. $bzoj2560$ 串珠子 容斥+$dp$

    正解:容斥+$dp$ 解题报告: 传送门$QwQ$ $umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多 ...

  7. bzoj4767两双手 容斥+组合

    4767: 两双手 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 684  Solved: 208[Submit][Status][Discuss] ...

  8. BZOJ4767: 两双手【组合数学+容斥原理】

    Description 老W是个棋艺高超的棋手,他最喜欢的棋子是马,更具体地,他更加喜欢马所行走的方式.老W下棋时觉得无聊,便决定加强马所行走的方式,更具体地,他有两双手,其中一双手能让马从(u,v) ...

  9. BZOJ4767 两双手(组合数学+容斥原理)

    因为保证了两向量不共线,平面内任何一个向量都被这两个向量唯一表示.问题变为一张有障碍点的网格图由左上走到右下的方案数. 到达终点所需步数显然是平方级别的,没法直接递推.注意到障碍点数量很少,那么考虑容 ...

随机推荐

  1. 《Celeste》 开发者是如何精心制作“冲刺”的

    转自:http://www.gameres.com/804804.html 简介与序曲 在Celesete里,许多细微的行动都是发生在转瞬之间的,甚至往往比你想象中还要“转瞬之间”. 这里是 [游戏机 ...

  2. 10-安装es

    1.安装jdk(jdk要求1.8.20或1.7.55以上) 2.上传es安装包 3.解压es tar -zxvf elasticsearch-2.3.1.tar.gz -C /opt/app/ 4.e ...

  3. DeepLearning初窥门径

    说明: 最近在看Ng的DL课程,感觉说的非常好,浅显易懂! 本来打算记录一下自己的学习过程,网上几个大神总结的太完美了,根本没必要自己去写了,而且浪费时间~~ 网易地址:http://mooc.stu ...

  4. [UnityShader基础]03.透明度混合

    如果要渲染半透明物体,那么就需要用到透明度混合. 需要注意的有这几点: 1.设置标签:Tags { "Queue"="Transparent" "Ig ...

  5. WinForm c#操作Excel

    1)Excel 的 Range 对象 在可以对 Microsoft Office Excel 2003 中的任何范围执行操作前,必须将其表示为 Range 对象并使用此 Range 的方法和属性.Ra ...

  6. poi横纵动态导入

    dao层 <insert id ="saveInTarget" parameterType="java.util.List" > INSERT IN ...

  7. Matplotlib--基本使用

    基础应用 import matplotlib.pyplot as plt import numpy as np #使用np.linspace定义x:范围是(-1,1);个数是50. 仿真一维数据组(x ...

  8. 使用appium做自动化测试时,send_keyss只能输入字母数字,无法输入中文

    解决方案: driver中增加以下2行配置: "unicodeKeyboard":True, #unicode编码输入 "resetKeyboard":True ...

  9. MySQL 物理文件体系结构的简单整理说明

    本文出处:http://www.cnblogs.com/wy123/p/7102128.html (保留出处并非什么原创作品权利,本人拙作还远远达不到,仅仅是为了链接到原文,因为后续对可能存在的一些错 ...

  10. java应用健康检查

    本文主要针对自己手写shell监控应用状态,有可系统解决方案的,比如K8S,可以略过 #!/bin/sh#health_check.sh count=`ps -ef | grep test.jar | ...