题目描述

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

题目地址

https://www.nowcoder.com/practice/72a5a919508a4251859fb2cfb987a0e6?tpId=13&tqId=11163&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking

思路

以2x8的矩形为例。示意图如下:

我们先把2x8的覆盖方法记为f(8)。用第一个1x2小矩阵覆盖大矩形的最左边时有两个选择,竖着放或者横着放。当竖着放的时候,右边还剩下2x7的区域,这种情况下的覆盖方法记为f(7)。接下来考虑横着放的情况。当1x2的小矩形横着放在左上角的时候,左下角和横着放一个1x2的小矩形,而在右边还剩下2x6的区域,这种情况下的覆盖方法记为f(6)。因此f(8)=f(7)+f(6)。此时我们可以看出,这仍然是斐波那契数列

Python

  1. # -*- coding:utf-8 -*-
  2. class Solution:
  3. def rectCover(self, number):
  4. # write code here
  5. if number <= 3:
  6. return number
  7. a, b = 1, 2
  8. for i in range(2,number):
  9. c = a+b
  10. a,b = b,c
  11. return c
  12.  
  13. if __name__ == '__main__':
  14. result = Solution().rectCover(4)
  15. print(result)

剑指Offer 10. 矩形覆盖 (递归)的更多相关文章

  1. 剑指offer 10矩形覆盖

    我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法 java版本: public class Solution { publ ...

  2. [剑指Offer] 10.矩形覆盖

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? [思路]可归纳得出结论: f(n) = f(n-1) + f ...

  3. 剑指Offer:矩形覆盖【N1】

    剑指Offer:矩形覆盖[N1] 题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目思考 我们先把2*8的 ...

  4. 剑指OFFER之矩形覆盖(九度OJ1390)

    题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入 ...

  5. 【剑指offer】矩形覆盖

    一.题目: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.思路: 斐波那契数列 三.代码:     

  6. 剑指offer:矩形覆盖

    题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 解题思路: 和跳台阶那道题差不多.分别以矩形的两条边长做拓 ...

  7. 《剑指offer》矩形覆盖

    一.题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.输入描述 输入n 三.输出描述 输出有多少种不同的覆 ...

  8. 【牛客网-剑指offer】矩形覆盖

    题目: 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形.请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 分析: 假设2为高,n为宽 因为高为2固定,会出现固定情况,即无论 ...

  9. 剑指Offer之矩形覆盖

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 比如n=3时,2*3的矩形块有3种覆盖方法: 思路:与裴波拉 ...

随机推荐

  1. 《CSS世界》读书笔记(一)

    <!-- <CSS世界> 张鑫旭 著 --> CSS世界构建的基石是HTML,而HTML最具代表的两个基石<div>和<span>正好是CSS世界中块级 ...

  2. undefined 和null的区别

    undefined 和null的区别null是一个表示"无"的对象,转为数值时为0:undefined是一个表示"无"的原始值,转为数值时为NaN.undefi ...

  3. GoldenGate for Java Adapter介绍一(原理篇)

    前言 Oracle Goldengate在很早前就推出了一个for java的版本,主要目的是方便把关系型数据实时写入到不支持的目标端,如JMS或Redis等key value数据库.在Hadoop刚 ...

  4. Dart基础-泛型和库

    https://blog.csdn.net/hekaiyou/article/details/46774727

  5. Python Redis hash

    hash表现形式上有些像pyhton中的dict,可以存储一组关联性较强的数据 , redis中Hash在内存中的存储格式如下图: hset(name, key, value) # name对应的ha ...

  6. java中什么是泛型

    一. 泛型概念的提出(为什么需要泛型)? 首先,我们看下下面这段简短的代码: 1 public class GenericTest { 2 3 public static void main(Stri ...

  7. SVN的Not authorized to open root of edit operation解决办法

    以为经常用到这是转贴  谢谢 Subversion装了1.5.2版,乌龟SVN装的是1.5.1版本,可以通过乌龟正常访问到版本库,但当check out时却出现了"Not authorize ...

  8. P4248 [AHOI2013]差异

    思路 SAM 后缀自动机parent树的LCA就是两个子串的最长公共后缀 现在要求LCP 所以把字符串反转一下 然后每个点的贡献就是endpos的大小,dfs一遍求出贡献就可以了 代码 #includ ...

  9. source insight常用设置问题

    http://www.cnblogs.com/bluestorm/archive/2012/10/28/2743792.html

  10. 正则化,L1,L2

    机器学习中在为了减小loss时可能会带来模型容量增加,即参数增加的情况,这会导致模型在训练集上表现良好,在测试集上效果不好,也就是出现了过拟合现象.为了减小这种现象带来的影响,采用正则化.正则化,在减 ...