由于python的gil,多线程不是cpu密集型最好的选择
多进程可以完全独立的进程环境中运行程序,可以充分的利用多处理器
但是进程本身的隔离带来的数据不共享也是一个问题,而且线程比进程轻量
import multiprocessing
import datetime
def calc(i):
sum = 0
for _ in range(1000000000):
sum+=1
print(i,sum) if __name__ == '__main__':
start = datetime.datetime.now() ps = []
for i in range(5):
p = multiprocessing.Process(target=calc,args=(i,))
ps.append(p)
p.start()
for p in ps:
p.join() delta = (datetime.datetime.now()-start).total_seconds()
print(delta)
注意多进程的代码一定要在__name__='__main__'下面执行
pid 进程id
exitcode 进程退出的状态码
terminate() 终止指定的进程
进程间同步:
multiprocessing还提供了共享内存,服务器进程来共享数据,还提供了queue队列,pipe管道用于进程间通信
通讯方式不同:
1多进程就是启动多个解释器进程,进程间通信必须序列化,反序列化
2.数据的线程安全性问题
由于每个进程中没有实现多线程,gil可以说没什么用
multiprocessing.Pool是进程池类
apply(self,func,args=(),kwds={})
阻塞执行,导致主进程执行其他子进程就像一个个执行
apply_async(self,func,args=(),kwds={},callback=None,error_callback=None)
与apply方法用法一致,非阻塞执行,得到结果后执行回调
close()
关闭池,池不能在接受新的任务
terminate()
结束工作进程,不在处理未处理的任务
join()
主进程阻塞等待子进程的退出,join方法要在close或terminate之后使用
import logging
import datetime
import multiprocessing FORMAT = '%(asctime)s\t %(processName)s %(process)d %(message)s'
logging.basicConfig(level=logging.INFO,format=FORMAT) def calc(i):
sum = 0
for _ in range(1000):
sum += 1
return sum if __name__ == '__main__':
start = datetime.datetime.now()
pool = multiprocessing.Pool(5)
for i in range(5):
pool.apply_async(calc,args=(i,),callback=lambda x:logging.info('{} in callback'.format(x)))
pool.close()
# pool.join() delta = (datetime.datetime.now()-start).total_seconds()
print(delta)
请求/应答模型:web应用中常见的处理模型
master启动多个worker工作进程,一般和cpu数目相同,发挥多核优势
worker工作进程中,往往需要操作网络io和磁盘io,启动多线程,提高并发处理能力,worker处理用户请求,往往需要等待数据,处理完请求还要通过网络io返回响应

2.异步并行 

'''
异步并行任务编程模块,提供一个高级的异步可执行的便利接口
ThreadPoolExecutor 异步调用的线程池的Executor
ProcessPoolExecutor 异步调用的进程池的Executor ThreadPoolExceutor对象
ThreadPoolExecutor(max_workers=1) 池中至多创建max_workers个线程来同时异步执行,返回Exceutor
submit(fn,*args,**kwargs) 提交执行的函数及其参数,返回Future实例
shutdown(wait=True) 清理池 Future类
done() 如果调用被成功的取消或者执行完成,返回True
cancelled() 如果调用被成功的取消,返回True
running() 如果正在运行而且不能被取消,返回True
cancel() 尝试取消调用,如果已经执行且不能取消返回False,否则返回True
result(timeout=None) 取返回结果,timeout为none,一直等待返回;timeout设置到期,抛出concurrent.futures.timeouterror异常。
exceptiuon(timeout=None) 取返回的异常,timeout为none,一直等待返回;timeout设置到期,抛出concurrent.futures.timeouterror异常。
'''

 

import threading
from concurrent import futures
import logging
import time FORMAT = '%(asctime)s\t %(processName)s %(process)d %(message)s'
logging.basicConfig(level=logging.INFO,format=FORMAT) def worker(n):
logging.info('begin to work {}'.format(n))
time.sleep(5)
logging.info('finished {}'.format(n))
#创建线程池,池的容量是3
executor = futures.ThreadPoolExecutor(max_workers=3)
fs = []
for i in range(3):
future = executor.submit(worker,i)
fs.append(future)
for i in range(3,6):
future = executor.submit(worker,i)
fs.append(future)
while True:
time.sleep(2)
logging.info(threading.enumerate())
flag = True
for f in fs: #判断是否有未完成的任务
logging.info(f.done())
flag = flag and f.done() if flag:
executor.shutdown() #清理池,池中线程全部杀掉
logging.info(threading.enumerate())
break
#线程池一旦创建线程,就不需要频繁清楚了

支持上下文:TODO

Python之多进程&异步并行的更多相关文章

  1. 【python】多进程锁multiprocess.Lock

    [python]多进程锁multiprocess.Lock 2013-09-13 13:48 11613人阅读 评论(2) 收藏 举报  分类: Python(38)  同步的方法基本与多线程相同. ...

  2. Python实现多进程

    Python可以实现多线程,但是因为Global Interpreter Lock (GIL),Python的多线程只能使用一个CPU内核,即一个时间只有一个线程在运行,多线程只是不同线程之间的切换, ...

  3. 『Python』多进程处理

    尝试学习python的多进程模组,对比多线程,大概的区别在: 1.多进程的处理速度更快 2.多进程的各个子进程之间交换数据很不方便 多进程调用方式 进程基本使用multicore() 进程池优化进程的 ...

  4. python 使用多进程实现并发编程/使用queue进行进程间数据交换

    import time import os import multiprocessing from multiprocessing import Queue, pool ""&qu ...

  5. Python多线程多进程

    一.线程&进程 对于操作系统来说,一个任务就是一个进程(Process),比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程, ...

  6. python中多进程+协程的使用以及为什么要用它

    前面讲了为什么python里推荐用多进程而不是多线程,但是多进程也有其自己的限制:相比线程更加笨重.切换耗时更长,并且在python的多进程下,进程数量不推荐超过CPU核心数(一个进程只有一个GIL, ...

  7. Python的多进程

    这里不说其它,Python的多进程网上已经有很多了,可以尽情搜索.但是用多进程一般是采用对任务的方式,所以注意文件锁定.一般采用Pool是比较合适的.给个网友的小代码 from multiproces ...

  8. 进程,线程,以及Python的多进程实例

    什么是进程,什么是线程? 进程与线程是包含关系,进程包含了线程. 进程是系统资源分配的最小单元,线程是系统任务执行的最小单元. 打个比方,打开word,word这个程序是一个进程,里面的拼写检查,字数 ...

  9. 进程与线程(2)- python实现多进程

    python 实现多进程 参考链接: https://morvanzhou.github.io/tutorials/python-basic/multiprocessing/ python中实现多进程 ...

随机推荐

  1. MapReduce 计数器简介

    转自:http://my.oschina.net/leejun2005/blog/276891?utm_source=tuicool&utm_medium=referral 1.计数器 简介 ...

  2. 34对MyBatis的博客的整理心得

    对本博客的mybatis重新读一下,做一个整理.如下: 1:为什么会有mybatis,因为原生的jdbc方式有很大问题: (1)数据库连接,使用时就创建,不使用立即释放,对数据库进行频繁连接开启和关闭 ...

  3. ABBYY PDF Transformer+支持的格式

    ABBYY PDF Transformer+是一个新的,全面的巧妙解决PDF文档的工具,它将泰比的光学字符识别(OCR)技术和Adobe®PDF技术完美结合,以确保实现便捷地处理任何类型的PDF文件, ...

  4. 【GIS】无人机相关技术(转)

    ---------------------------------------------------------------------------------------------------G ...

  5. [原][openstack-pike][controller node][issue-3][horizon] dashboard show internal error 500 Cannot serve directory /var/www/html

    问题点: 安装完pike后发现只能使用 ip:80 登录到http的主页面 不能使用 http://controller_ip:80/dashboard 登录openstack登录页面.如下图 重启h ...

  6. 解决FAT32格式U盘安装win10时0x8007000D错误

    问题由来 我一直使用U盘,UltraISO软碟通和msdn原版镜像来装系统.最近在把Win10 1709升级为1803时遇到了问题.同样也是使用UltraISO刻录镜像到U盘的方法安装的,这次从U盘启 ...

  7. jenkins git 之 Advanced clone behaviours

    jenins 上的 Git Plugin插件,默认是下载完整的历史版本,随着分支约多,历史版本约多,整个文件会很大,下载常常会超时. 单独的git命令可以使用以下方式来优化 git clone --d ...

  8. css的position中absolute和fixed的区别

    fixed:固定定位 absolute:绝对定位 区别很简单: 1.没有滚动条的情况下没有差异 2.在有滚动条的情况下,fixed定位不会随滚动条移动而移动,而absolute则会随滚动条移动 常用场 ...

  9. Spark连接MongoDB之Scala

    MongoDB Connector for Spark Spark Connector Scala Guide spark-shell --jars "mongo-spark-connect ...

  10. react使用mobx

    mobx api 使用装饰器语法 mobx数据转化为js数据 安装 yarn add mobx mobx-react yarn add babel-preset-mobx --dev "pr ...