BZOJ.1312.[Neerc2006]Hard Life(分数规划 最大权闭合子图)
最大密度子图。
二分答案\(x\),转为求是否存在方案满足:\(边数-x*点数\geq 0\)。
选一条边就必须选两个点,所以可以转成最大权闭合子图。边有\(1\)的正权,点有\(x\)的负权。判断\(边数-最小割\)是否非负即可。
有一个结论是,任意两个密度子图,它们的密度差不超过\(\frac{1}{n^2}\)。
所以拿eps=1e-7或者更小做二分边界不对。。。
必须是\(while(l+1.0/n/n<=r)\)。
还要注意精度的问题。。
m=0要输出1。
//1300kb 236ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define eps 1e-8
const int N=2005,M=6005+205;
const double INF=1ll<<55;
int n,m,src,des,Ans,A[N],B[N],Enum,H[N],nxt[M],fr[M],to[M],lev[N],pre[N];
double cap[M];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AE(int u,int v,double w)
{
to[++Enum]=v, fr[Enum]=u, nxt[Enum]=H[u], H[u]=Enum, cap[Enum]=w;
to[++Enum]=u, fr[Enum]=v, nxt[Enum]=H[v], H[v]=Enum, cap[Enum]=0;
}
bool BFS()
{
static int q[N];
for(int i=0; i<des; ++i) lev[i]=des+1;
int h=0,t=1; q[0]=des, lev[des]=0;
while(h<t)
{
int x=q[h++];
for(int i=H[x]; i; i=nxt[i])
if(cap[i^1]>=eps && lev[to[i]]==des+1)
lev[to[i]]=lev[x]+1, q[t++]=to[i];
}
return lev[src]<=des;
}
inline double Augment()
{
double mn=INF;
for(int i=des; i; i=fr[pre[i]])
mn=std::min(mn,cap[pre[i]]);
for(int i=des; i; i=fr[pre[i]])
cap[pre[i]]-=mn, cap[pre[i]^1]+=mn;
return mn;
}
double ISAP()
{
static int cur[N],num[N];
if(!BFS()) return 0;
for(int i=0; i<=des; ++i) cur[i]=H[i], ++num[lev[i]];
int x=0; double res=0;
while(lev[0]<=des)
{
if(x==des) x=0, res+=Augment();
bool can=0;
for(int i=cur[x]; i; i=nxt[i])
if(lev[to[i]]==lev[x]-1 && cap[i]>=eps)
{
can=1, cur[x]=i, pre[x=to[i]]=i;
break;
}
if(!can)
{
int mn=des;
for(int i=H[x]; i; i=nxt[i])
if(cap[i]>=eps) mn=std::min(mn,lev[to[i]]);
if(!--num[lev[x]]) break;
++num[lev[x]=mn+1], cur[x]=H[x];
if(x) x=fr[pre[x]];
}
}
return res;
}
bool Check(double x)
{
Enum=1, memset(H,0,des+1<<2);
for(int i=1; i<=m; ++i) AE(0,i+n,1), AE(i+n,A[i],INF), AE(i+n,B[i],INF);
for(int i=1; i<=n; ++i) AE(i,des,x);
return m-ISAP()>=eps;
}
void DFS(int x)
{
static bool vis[N];
vis[x]=1, Ans+=(x<=n);
for(int i=H[x]; i; i=nxt[i])
if(cap[i]>=eps && !vis[to[i]]) DFS(to[i]);
}
int main()
{
n=read(),m=read(),src=0,des=n+m+1;
if(!m) return puts("1"),0;
for(int i=1; i<=m; ++i) A[i]=read(),B[i]=read();
double l=0.49,r=m/2.0,mid,EPS=1.0/n/n;//l不能设0.5。虽然最优比率最小是0.5,但是因为神奇的浮点误差0.5做最优比率并不对(0.49999999403953才对)
while(l+EPS<r)
if(Check(mid=(l+r)*0.5)) l=mid;
else r=mid;
Check(l), DFS(src);
printf("%d\n",Ans-1);
return 0;
}
BZOJ.1312.[Neerc2006]Hard Life(分数规划 最大权闭合子图)的更多相关文章
- 2018.11.06 NOIP训练 最大获利(profit)(01分数规划+最大权闭合子图)
传送门 好题啊. ∑i<jpi,jK∗(200−K)>X\frac{\sum_{i<j}p_{i,j}}{K*(200-K)}>XK∗(200−K)∑i<jpi,j ...
- bzoj 1312: Hard Life 01分数规划+网络流
题目: Description 在一家公司中,人事部经理与业务部经理不和.一次,总经理要求人事部从公司的职员中挑选出一些来帮助业务部经理完成一项任务.人事部经理发现,在公司的所有职员中,有一些人相处得 ...
- bzoj 3232 01分数规划+最大权封闭子图判定
我们的目标是使v/c最小化,所以构造函数g(x)=v-x*c,那么 二分一个X,判断当时的v-x*c的值是多少,然后根据g(x)函数的 单调递减性来二分,判断,直到g(x)=0的时候当前的X就是答案. ...
- [BZOJ 1497][NOI 2006]最大获利(最大权闭合子图)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497 分析: 这是在有向图中的问题,且边依赖于点,有向图中存在点.边之间的依赖关系可以 ...
- BZOJ.1497.[NOI2006]最大获利(最小割 最大权闭合子图Dinic)
题目链接 //裸最大权闭合子图... #include<cstdio> #include<cctype> #include<algorithm> #define g ...
- bzoj 1565 [NOI2009]植物大战僵尸【tarjan+最大权闭合子图】
一上来以为是裸的最大权闭合子图,上来就dinic -然后没过样例.不得不说样例还是非常良心的给了一个强连通分量,要不然就WA的生活不能自理了 然后注意到有一种特殊情况:每个植物向他保护的植物连边(包括 ...
- bzoj 3232 圈地游戏 —— 01分数规划+最小割建图(最大权闭合子图)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 心烦意乱的时候调这道题真是...越调越气,就这样过了一晚上... 今天再认真看看,找出 ...
- LibreOJ 2003. 「SDOI2017」新生舞会 基础01分数规划 最大权匹配
#2003. 「SDOI2017」新生舞会 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- [SCOI2018]游泳池(计算几何+分数规划+最大权闭合子图)
题目链接 https://www.luogu.org/problemnew/show/U56187 注:题面参考了网上的其他博客,并非原题题面,因此数据范围可能有误.数据为原创数据. 题解 其实就是许 ...
随机推荐
- java----AOP框架理解
面向切面编程: 通过动态代理+加配置文件 目的解耦 给主逻辑添加一些修饰功能,但是不在主逻辑代码中进行修改,有点类似python中的装饰器,调用方法还是是通过接口的那个类来调用: import jav ...
- 使用git克隆项目、从dev分支上更新代码以及将代码提交到Coding(或GitHub)上面
本教程的目的: 这是个crm项目中,有两个分支一个是master 和 dev ,master主分支,不允许提交代码,我要拉去dev分支上最新的代码,并将修改后的项目,在推送到dev分支上. 一. 1. ...
- GetComputerNameEx()
昨晚看了MSDN提供的GetComputerNameEx function(参考:https://msdn.microsoft.com/en-us/library/windows/desktop/ms ...
- 字定义JSON序列化支持datetime格式序列化
字定义JSON序列化支持datetime格式序列化 由于json.dumps无法处理datetime日期,所以可以通过自定义处理器来做扩展,如: import json from datetime i ...
- RazorEngine.Templating MVC中View当模板
最近在做一个生成JSON的功能,比较笨的办法就是把需要的数据拆分开,保存到数据库,在从数据库中取出来进行拼接.这种方法比较笨,代码就不贴了. 需要注意拼接的时的转义字符: "\"s ...
- VMware搭建虚拟机服务器
一.需求点描述: 1.在有路由器的情况下,能够通过固定的外网IP访问路由器中某台实体机中运行的虚拟机. 2.能够通过外网IP访问该虚拟机中的ftp.远程连接.iis.tomcat等. 二.原理分析: ...
- [转] mongoDB与mongoose
mongoDB简介 mongoDB与一些关系型数据库相比,它更显得轻巧.灵活,非常适合在数据规模很大.事务性不强的场合下使用.同时它也是一个对象数据库,没有表.行等概念,也没有固定的模式和结构,所有的 ...
- [转] Webpack的devtool和source maps
source maps Webpack打包生成的.map后缀文件,使得我们的开发调试更加方便,它能帮助我们链接到断点对应的源代码的位置进行调试(//# souceURL),而devtool就是用来指定 ...
- Flask--第三个例子,写一个接口,该接口返回html前端页面,模板的使用
将接口数据返回至html前端页面有两种方法 方法一: 1 @app.route('/index',methods=['get']) 2 def open_index(): 3 page=open(' ...
- python---文件读写-IO
IO----文件操作,读操作 1.open('文件名','打开方式',mode[buff]);------------->第一个参数是文件路径,第二个参数是打开方式(如果不写,默认是只读),第三 ...