BZOJ

最大密度子图。

二分答案\(x\),转为求是否存在方案满足:\(边数-x*点数\geq 0\)。

选一条边就必须选两个点,所以可以转成最大权闭合子图。边有\(1\)的正权,点有\(x\)的负权。判断\(边数-最小割\)是否非负即可。

有一个结论是,任意两个密度子图,它们的密度差不超过\(\frac{1}{n^2}\)。

所以拿eps=1e-7或者更小做二分边界不对。。。

必须是\(while(l+1.0/n/n<=r)\)。

还要注意精度的问题。。

m=0要输出1。

//1300kb	236ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define eps 1e-8
const int N=2005,M=6005+205;
const double INF=1ll<<55; int n,m,src,des,Ans,A[N],B[N],Enum,H[N],nxt[M],fr[M],to[M],lev[N],pre[N];
double cap[M]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AE(int u,int v,double w)
{
to[++Enum]=v, fr[Enum]=u, nxt[Enum]=H[u], H[u]=Enum, cap[Enum]=w;
to[++Enum]=u, fr[Enum]=v, nxt[Enum]=H[v], H[v]=Enum, cap[Enum]=0;
}
bool BFS()
{
static int q[N];
for(int i=0; i<des; ++i) lev[i]=des+1;
int h=0,t=1; q[0]=des, lev[des]=0;
while(h<t)
{
int x=q[h++];
for(int i=H[x]; i; i=nxt[i])
if(cap[i^1]>=eps && lev[to[i]]==des+1)
lev[to[i]]=lev[x]+1, q[t++]=to[i];
}
return lev[src]<=des;
}
inline double Augment()
{
double mn=INF;
for(int i=des; i; i=fr[pre[i]])
mn=std::min(mn,cap[pre[i]]);
for(int i=des; i; i=fr[pre[i]])
cap[pre[i]]-=mn, cap[pre[i]^1]+=mn;
return mn;
}
double ISAP()
{
static int cur[N],num[N];
if(!BFS()) return 0;
for(int i=0; i<=des; ++i) cur[i]=H[i], ++num[lev[i]];
int x=0; double res=0;
while(lev[0]<=des)
{
if(x==des) x=0, res+=Augment();
bool can=0;
for(int i=cur[x]; i; i=nxt[i])
if(lev[to[i]]==lev[x]-1 && cap[i]>=eps)
{
can=1, cur[x]=i, pre[x=to[i]]=i;
break;
}
if(!can)
{
int mn=des;
for(int i=H[x]; i; i=nxt[i])
if(cap[i]>=eps) mn=std::min(mn,lev[to[i]]);
if(!--num[lev[x]]) break;
++num[lev[x]=mn+1], cur[x]=H[x];
if(x) x=fr[pre[x]];
}
}
return res;
}
bool Check(double x)
{
Enum=1, memset(H,0,des+1<<2);
for(int i=1; i<=m; ++i) AE(0,i+n,1), AE(i+n,A[i],INF), AE(i+n,B[i],INF);
for(int i=1; i<=n; ++i) AE(i,des,x);
return m-ISAP()>=eps;
}
void DFS(int x)
{
static bool vis[N];
vis[x]=1, Ans+=(x<=n);
for(int i=H[x]; i; i=nxt[i])
if(cap[i]>=eps && !vis[to[i]]) DFS(to[i]);
} int main()
{
n=read(),m=read(),src=0,des=n+m+1;
if(!m) return puts("1"),0;
for(int i=1; i<=m; ++i) A[i]=read(),B[i]=read();
double l=0.49,r=m/2.0,mid,EPS=1.0/n/n;//l不能设0.5。虽然最优比率最小是0.5,但是因为神奇的浮点误差0.5做最优比率并不对(0.49999999403953才对)
while(l+EPS<r)
if(Check(mid=(l+r)*0.5)) l=mid;
else r=mid;
Check(l), DFS(src);
printf("%d\n",Ans-1); return 0;
}

BZOJ.1312.[Neerc2006]Hard Life(分数规划 最大权闭合子图)的更多相关文章

  1. 2018.11.06 NOIP训练 最大获利(profit)(01分数规划+最大权闭合子图)

    传送门 好题啊. ∑i<jpi,jK∗(200−K)>X\frac{\sum_{i<j}p_{i,j}}{K*(200-K)}>XK∗(200−K)∑i<j​pi,j​​ ...

  2. bzoj 1312: Hard Life 01分数规划+网络流

    题目: Description 在一家公司中,人事部经理与业务部经理不和.一次,总经理要求人事部从公司的职员中挑选出一些来帮助业务部经理完成一项任务.人事部经理发现,在公司的所有职员中,有一些人相处得 ...

  3. bzoj 3232 01分数规划+最大权封闭子图判定

    我们的目标是使v/c最小化,所以构造函数g(x)=v-x*c,那么 二分一个X,判断当时的v-x*c的值是多少,然后根据g(x)函数的 单调递减性来二分,判断,直到g(x)=0的时候当前的X就是答案. ...

  4. [BZOJ 1497][NOI 2006]最大获利(最大权闭合子图)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497 分析: 这是在有向图中的问题,且边依赖于点,有向图中存在点.边之间的依赖关系可以 ...

  5. BZOJ.1497.[NOI2006]最大获利(最小割 最大权闭合子图Dinic)

    题目链接 //裸最大权闭合子图... #include<cstdio> #include<cctype> #include<algorithm> #define g ...

  6. bzoj 1565 [NOI2009]植物大战僵尸【tarjan+最大权闭合子图】

    一上来以为是裸的最大权闭合子图,上来就dinic -然后没过样例.不得不说样例还是非常良心的给了一个强连通分量,要不然就WA的生活不能自理了 然后注意到有一种特殊情况:每个植物向他保护的植物连边(包括 ...

  7. bzoj 3232 圈地游戏 —— 01分数规划+最小割建图(最大权闭合子图)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 心烦意乱的时候调这道题真是...越调越气,就这样过了一晚上... 今天再认真看看,找出 ...

  8. LibreOJ 2003. 「SDOI2017」新生舞会 基础01分数规划 最大权匹配

    #2003. 「SDOI2017」新生舞会 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  9. [SCOI2018]游泳池(计算几何+分数规划+最大权闭合子图)

    题目链接 https://www.luogu.org/problemnew/show/U56187 注:题面参考了网上的其他博客,并非原题题面,因此数据范围可能有误.数据为原创数据. 题解 其实就是许 ...

随机推荐

  1. java多线程机制中的Thread和Runnable()区别

    1.java语言使用Thread类及其子类对象来表示线程,新建的一个线程声明周期中经历 新建.(声明一个线程,此时他已经有了相应的内存空间和其他资源),运行(线程创建之久就据用了运行的条件,一旦轮到使 ...

  2. linux学习笔记之 basename, dirname

    前言: basename: 用于打印目录或者文件的基本名称 dirname: 去除文件名中的非目录部分,仅显示与目录有关的内容.dirname命令读取指定路径名保留最后一个/及其后面的字符,删除其他部 ...

  3. spring cloud Hystix熔断机制--基本熔断配置和Fegin client熔断配置

    所谓的熔断机制和日常生活中见到电路保险丝是非常相似的,当出现了问题之后,保险丝会自动烧断,以保护我们的电器, 那么如果换到了程序之中呢? 当现在服务的提供方出现了问题之后整个的程序将出现错误的信息显示 ...

  4. python 内建函数

    # # __geratteibute__class Itcast(object): def __init__(self,subject1): self.subject1 = subject1 self ...

  5. JavaScript编程语言

    JavaScript编程语言 JavaScript是一门编程语言,浏览器内置了JavaScript语言的解释器,所以在浏览器上按照JavaScript语言的规则编写相应代码之,浏览器可以解释并做出相应 ...

  6. EXcel vba 获取批注信息

    Public Function pizhu(i As Range) pizhu = i.Cells.Comment.Text End Function EXcel VBA获取批注信息

  7. 查看python脚本的运行pid,让python脚本后台运行

    ps -ef | grep Productor.py | grep -v grep # 先测试好 python3  /usr/local/software/ELK/Productor.py # 没问题 ...

  8. 一脸懵逼学习KafKa集群的安装搭建--(一种高吞吐量的分布式发布订阅消息系统)

    kafka的前言知识: :Kafka是什么? 在流式计算中,Kafka一般用来缓存数据,Storm通过消费Kafka的数据进行计算.kafka是一个生产-消费模型. Producer:生产者,只负责数 ...

  9. C# 会话,进程,线程,线程安全

    会话->进程->线程 b/s网站中,每个用户的访问为一次会话,会话中包含CPU为用户在内存中开辟空间存储的会话信息, 如Session,进程,会话拥有一个进程,同一进程下可以拥有多个线程. ...

  10. U32592 摘果实

    链接:https://www.luogu.org/problemnew/show/U32592 题解: 60-70分 二分+网络流