问题

已知某应力张量的分量为

\[\sigma_{11}=3,\quad\sigma_{12} = \sigma_{13} = 1, \quad \sigma_{22} = \sigma_{33} = 0, \quad\sigma_{23} = 2
\]

  • 1、全部主应力
  • 2、最大主应力对应的主方向
  • 3、求方向矢量为 $\boldsymbol{n} = \left(0, \dfrac{1}{\sqrt{2}}, \dfrac{1}{\sqrt{2}}\right)$ 的斜面上的正应力 $\sigma_n$ 和剪应力 $\tau_n$。
  • 应力张量

    已知应力张量有如下形式

    \[\left[
    \begin{array}{ccc}
    \sigma_{x} & \tau_{xy} & \tau_{xz}\\
    \tau_{yx} & \sigma_{y} & \tau_{yz}\\
    \tau_{zx} & \tau_{zy} & \sigma_{z}
    \end{array}
    \right]
    =
    \left[
    \begin{array}{ccc}
    3 & 1 & 1\\
    1 & 0 & 2\\
    1 & 2 & 0
    \end{array}
    \right]
    \]

    求解

    导入sympy模块

    1. from sympy import *
    2. init_printing(use_unicode=True)

    Matrix对象表示应力矩阵

    1. sigma = Matrix([[3, 1, 1], [1, 0, 2], [1, 2, 0]])
    2. sigma

    \[\left[\begin{matrix}3 & 1 & 1\\1 & 0 & 2\\1 & 2 & 0\end{matrix}\right]
    \]

    1、求全部主应力

    求特征值

    • 调用 Matrix 对象的 eigenvals 方法
    1. sigma.eigenvals()

    \[\left \{ -2 : 1, \quad 1 : 1, \quad 4 : 1\right \}
    \]

    • 冒号后的数字表示一重特征值

    求特征矢量

    • 调用 Matrix 对象的 eigenvects 方法
    1. sigma.eigenvects()

    \[\left [ \left ( -2, \quad 1, \quad \left [ \left[\begin{matrix}0\\-1\\1\end{matrix}\right]\right ]\right ), \quad \left ( 1, \quad 1, \quad \left [ \left[\begin{matrix}-1\\1\\1\end{matrix}\right]\right ]\right ), \quad \left ( 4, \quad 1, \quad \left [ \left[\begin{matrix}2\\1\\1\end{matrix}\right]\right ]\right )\right ]
    \]

    2、求最大主应力对应的主方向

    最大主应力

    \[\sigma_1 = 4
    \]

    最大主应力对应的主方向

    \[\dfrac{1}{\sqrt{6}}\left(2, 1, 1\right)
    \]

    3、求斜面上的正应力 \(\sigma_n\) 和剪应力 \(\tau_n\)

    方向矢量

    \[\boldsymbol{n} = \left(0, \dfrac{1}{\sqrt{2}}, \dfrac{1}{\sqrt{2}}\right)
    \]

    1. n = Matrix([[0], [1], [1]])/sqrt(2)
    2. n

    \[\left[\begin{matrix}0\\\frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2}\end{matrix}\right]
    \]

    应力矢量 \(\boldsymbol{T} = \boldsymbol{\sigma}\cdot\boldsymbol{n}\)

    1. T = sigma*n
    2. T

    \[\left[\begin{matrix}\sqrt{2}\\\sqrt{2}\\\sqrt{2}\end{matrix}\right]
    \]

    正应力 \(\sigma_n = \boldsymbol{T}\cdot\boldsymbol{n}\)

    1. sigma_n = T.T*n
    2. sigma_n

    \[\left[\begin{matrix}2\end{matrix}\right]
    \]

    剪应力

    \[\tau_n = \sqrt{T^2 - \sigma_n^2}
    \]

    1. tau_n =sqrt(T.T*T - sigma_n**2)
    2. tau_n

    \[\left(\left[\begin{matrix}2\end{matrix}\right]\right)^{\frac{1}{2}}
    \]

    参考

    Python3之弹性力学——应力张量2的更多相关文章

    1. Python3之弹性力学——应力张量1

      题目 已知某点的应力张量为: \[ \left[ \begin{array}{ccc} \sigma_{x} &\tau_{xy} &\tau_{xz}\\ \tau_{yx} &am ...

    2. python3  threading初体验

      python3中thread模块已被废弃,不能在使用thread模块,为了兼容性,python3将thread命名为_thread.python3中我们可以使用threading进行代替. threa ...

    3. Python3中的字符串函数学习总结

      这篇文章主要介绍了Python3中的字符串函数学习总结,本文讲解了格式化类方法.查找 & 替换类方法.拆分 & 组合类方法等内容,需要的朋友可以参考下. Sequence Types ...

    4. Mac-OSX的Python3.5虚拟环境下安装Opencv

      Mac-OSX的Python3.5虚拟环境下安装Opencv 1   关键词 关键词:Mac,OSX,Python3.5,Virtualenv,Opencv 2   概述 本文是一篇 环境搭建 的基础 ...

    5. Ubuntu部署python3.5的开发和运行环境

      Ubuntu部署python3.5的开发和运行环境 1 概述 由于最近项目全部由python2.x转向 python3.x(使用目前最新的 python3.5.1) ,之前的云主机的的默认python ...

    6. Python3 登陆网页并保持cookie

      网页登陆 网页登陆的原理都是,保持一个sessionid在cookie然后,根据sessionid在服务端找到cookie进行用户识别 python实现 由于python的简单以及丰富的类库是开发网络 ...

    7. 阿里云 SDK python3支持

      最近的一个项目需要操作阿里云的RDS,项目使用python3,让人惊讶的是官方的SDK竟然只支持python2 在阿里云现有SDK上改了改,文件的修改只涉及aliyun/api/base.py,详见h ...

    8. python3爬取1024图片

      这两年python特别火,火到博客园现在也是隔三差五的出现一些python的文章.各种开源软件.各种爬虫算法纷纷开路,作为互联网行业的IT狗自然看的我也是心痒痒,于是趁着这个雾霾横行的周末瞅了两眼,作 ...

    9. CentOS7中安装Python3.5

      1.下载 https://www.python.org/ftp/python/3.5.2/Python-3.5.2.tgz 2.上传到服务器 3. 安装相关依赖 yum install gcc ope ...

    随机推荐

    1. Allegro PCB Design GXL (legacy) 使用slide推挤走线,走线的宽度就发生改变的原因

      Allegro PCB Design GXL (legacy) version 16.6-2015 使用slide推挤走线,走线的宽度就会发生改变. 后来发现是因为约束管理器(Constraint M ...

    2. Jmeter 谷歌插件工具blazemeter录制脚本

      1.下载谷歌浏览器插件工具:blazemeter. 2.在谷歌浏览器中拖放安装扩展工具:blazemeter. 粘贴的图像828x219 13.5 KB 3.测试网站利用这个工具录制jmter脚本. ...

    3. ajax请求成功 但是被error拦截

      前端与后台的数据格式不符合 例如后台发过来的一段数据格式是json 然而我们却用默认的fromData去解析,便会被error拦截 在ajax 添加 dataType:'json',

    4. 步步为营-77-Ajax简介

      AJax:异步JavaScript和XML.Asynchronous JavaScript and XML 优点:无刷新 1 JavaScript下的Ajax 1.1 XMLHttpRequest对象 ...

    5. Python知乎热门话题数据的爬取实战

      import requestsfrom pyquery import PyQuery as pq url = 'https://www.zhihu.com/explore'headers = { 'u ...

    6. azkaban安装使用

      本文记录azkaban的安装和 一些报错处理(文章末尾). AzKaban组成 MySQL数据库,azkaban-server (web端),azkaban-executor (执行job) 1.下载 ...

    7. hdfs数据到hbase过程

      需求:将HDFS上的文件中的数据导入到hbase中 实现上面的需求也有两种办法,一种是自定义mr,一种是使用hbase提供好的import工具 一.hdfs中的数据是这样的 hbase创建好表 cre ...

    8. Python入门:求1-2+3-4+5...99的所有数的和

      num =1 sum =0 while num <=99: if num % 2 ==1: sum = sum + num num =num +1 print(sum) 2.求1-2+3-4+5 ...

    9. 20165323 实验二 Java面向对象程序设计

      一.实验报告封面 课程:Java程序设计 班级:1653班 姓名:杨金川 学号:20165323 指导教师:娄嘉鹏 实验日期:2018年4月16日 实验时间:13:45 - 15:25 实验序号:二 ...

    10. 处理OSS上传失败一例

      问题描述: 上传oss云存储,无法成功,报错: 2019-01-29 17:44:59,552 oss2.api [ERROR] 140080008111872 : Exception: {'stat ...