http://blog.miskcoo.com/2015/05/polynomial-inverse 好神啊!

  B(x)=B'(x)·(2-A(x)B'(x))

  注意ntt的时候防止项数溢出,即将多项式补零成n位后,相乘时次数最高的非零项不超过n次。

  upd:可以在点值表示下直接相乘。又好写又跑得快。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 550000
#define P 998244353
int n,t,r[N],a[N],b[N],c[N],d[N];
int ksm(int a,int k)
{
if (k==) return ;
int tmp=ksm(a,k>>);
if (k&) return 1ll*tmp*tmp%P*a%P;
else return 1ll*tmp*tmp%P;
}
int inv(int x){return ksm(x,P-);}
void DFT(int n,int *a,int p)
{
for (int i=;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=;i<=n;i<<=)
{
int wn=ksm(p,(P-)/i);
for (int j=;j<n;j+=i)
{
int w=;
for (int k=j;k<j+(i>>);k++,w=1ll*w*wn%P)
{
int x=a[k],y=1ll*w*a[k+(i>>)]%P;
a[k]=(x+y)%P,a[k+(i>>)]=(x-y+P)%P;
}
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("inverse.in","r",stdin);
freopen("inverse.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read();
for (int i=;i<n;i++) a[i]=read();
t=;b[]=inv(a[]);
int inv3=inv();
while (t<n)
{
t<<=;
for (int i=;i<t;i++) d[i]=a[i];
t<<=;
memcpy(c,b,sizeof(b));
for (int i=;i<t;i++) r[i]=(r[i>>]>>)|(i&)*(t>>);
DFT(t,c,);DFT(t,d,);
for (int i=;i<t;i++) c[i]=1ll*c[i]*d[i]%P;
DFT(t,c,inv3);
int invt=inv(t);
for (int i=;i<t;i++) c[i]=1ll*c[i]*invt%P;
for (int i=;i<t;i++) c[i]=(P-c[i])%P;
c[]=(c[]+)%P;
for (int i=(t>>);i<t;i++) c[i]=;
DFT(t,b,);DFT(t,c,);
for (int i=;i<t;i++) b[i]=1ll*b[i]*c[i]%P;
DFT(t,b,inv3);
for (int i=;i<t;i++) b[i]=1ll*b[i]*invt%P;
for (int i=(t>>);i<t;i++) b[i]=;
t>>=;
}
for (int i=;i<n;i++) printf("%d ",b[i]);
return ;
}

Luogu4238 【模板】多项式求逆(NTT)的更多相关文章

  1. 洛谷.4238.[模板]多项式求逆(NTT)

    题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...

  2. 【BZOJ 4555】[Tjoi2016&Heoi2016]求和 多项式求逆/NTT+第二类斯特林数

    出处0.0用到第二类斯特林数的性质,做法好像很多,我打的是直接ntt,由第二类斯特林数的容斥公式可以推出,我们可以对于每一个i,来一次ntt求出他与所有j组成的第二类斯特林数的值,这个时候我们是O(n ...

  3. P4238 【模板】多项式求逆 ntt

    题意:求多项式的逆 题解:多项式最高次项叫度deg,假设我们对于多项式\(A(x)*B(x)\equiv 1\),已知A,求B 假设度为n-1,\(A(x)*B(x)\equiv 1(mod x^{\ ...

  4. luoguP4238 【模板】多项式求逆 NTT

    Code: #include <bits/stdc++.h> #define N 1000010 #define mod 998244353 #define setIO(s) freope ...

  5. Luogu4512 【模板】多项式除法(多项式求逆+NTT)

    http://blog.miskcoo.com/2015/05/polynomial-division 好神啊! 通过翻转多项式消除余数的影响,主要原理是商只与次数不小于m的项有关. #include ...

  6. 洛谷 P4238 [模板] 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...

  7. [模板][P4238]多项式求逆

    NTT多项式求逆模板,详见代码 #include <map> #include <set> #include <stack> #include <cmath& ...

  8. 2018.12.30 洛谷P4238 【模板】多项式求逆

    传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x ...

  9. luogu P4725 多项式对数函数 (模板题、FFT、多项式求逆、求导和积分)

    手动博客搬家: 本文发表于20181125 13:25:03, 原地址https://blog.csdn.net/suncongbo/article/details/84487306 题目链接: ht ...

  10. NTT+多项式求逆+多项式开方(BZOJ3625)

    定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...

随机推荐

  1. C++11 并发指南三(std::mutex 详解)

    上一篇<C++11 并发指南二(std::thread 详解)>中主要讲到了 std::thread 的一些用法,并给出了两个小例子,本文将介绍 std::mutex 的用法. Mutex ...

  2. Image Restoration[Deep Image Prior]

    0.背景 这篇论文是2017年11月29号第一次提交到arxiv并紧接着30号就提交了V2版本的. 近些年DCNN模型在图像生成和修复上面表现很好,大部分人认为好的原因主要是由于网络基于大量的图片训练 ...

  3. Luogu4774 NOI2018 屠龙勇士 ExCRT

    传送门 原来NOI也会出裸题啊-- 用multiset求出对付每一个BOSS使用的武器威力\(ATK_i\),可以得到\(m\)个式子\(ATK_ix \equiv a_i \mod p_i\) 看起 ...

  4. CF1106F Lunar New Year and a Recursive Sequence 原根、矩阵快速幂、BSGS

    传送门 好久没写数论题了写一次调了1h 首先发现递推式是一个乘方的形式,线性递推和矩阵快速幂似乎都做不了,那么是否能够把乘方运算变成加法运算和乘法运算呢? 使用原根!学过\(NTT\)的都知道\(99 ...

  5. SPOJ33&POJ1934 Trip LCS

    题目传送门:https://www.luogu.org/problemnew/show/SP33 题目大意:给出两个字符串,求其LCS(最长公共子序列)的长度与具体方案(相同的串算作同一方案).数据组 ...

  6. (转)/etc/init.d/functions详解

    转自:https://www.cnblogs.com/image-eye/archive/2011/10/26/2220405.html functions这个脚本是给/etc/init.d里边的文件 ...

  7. WPF-利用Blend写的平面控制闸门开关动画

    原文:WPF-利用Blend写的平面控制闸门开关动画 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/yangyisen0713/article/de ...

  8. [Oracle]Oracle 各产品的 生命周期

    http://www.oracle.com/us/support/library/lifetime-support-technology-069183.pdf

  9. 给 MSYS2 添加中科大的源

    最近一段时间不知怎么的,使用默认的 MSYS2 源升级软件或是安装新软件的特别的慢.所以就翻了翻国内的几个开源软件的镜像库,发现中科大的库里就有 MSYS2.所以就研究了一下,给 MSYS2 添加了中 ...

  10. Ionic 入门与实战之第二章第一节:Ionic 环境搭建之开发环境配置

    原文发表于我的技术博客 本文是「Ionic 入门与实战」系列连载的第二章第一节,主要对 Ionic 的开发环境配置做了简要的介绍,本文介绍的开发环境为 Mac 系统,Windows 系统基本类似,少许 ...