BZOJ 3612: [Heoi2014]平衡
3612: [Heoi2014]平衡
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 283 Solved: 219
[Submit][Status][Discuss]
Description
Input
第一行,一个正整数,表示数据组数 T(萱萱向你询问的次数)。
Output
共 T 行,每行一个正整数,代表你得出的对应问题的答案。
Sample Input
6 5 10000
4 1 10000
9 6 10000
4 6 10000
5 1 10000
8318 10 9973
9862 9 9973
8234 9 9973
9424 9 9973
9324 9 9973
Sample Output
1
920
8
1
4421
2565
0
446
2549
HINT
T <= 20,1 <= n <= 10000,1 <= k <= 10,2 <= p <= 10000,且 k <= 2n+1。
Source
整数划分问题???
#include <cstdio>
#include <cstring> int T, N, M, P, F[][], ANS; signed main(void) {
for (scanf("%d", &T); T--; ) {
scanf("%d%d%d", &N, &M, &P);
memset(F, , sizeof F), ANS = , F[][] = ;
for (int i = ; i <= N * M; ++i)
for (int j = ; j <= M; ++j) {
if (i >= j)F[i][j] += F[i - j][j];
if (i >= j)F[i][j] += F[i - j][j - ];
if (i >= N + )F[i][j] -= F[i - N - ][j - ]; F[i][j] = (F[i][j] + P) % P;
}
for (int i = ; i <= N * M; ++i)
for (int j = ; j <= M; ++j)
(ANS += F[i][j] * F[i][M - j]) %= P;
--M;
for (int i = ; i <= N * M; ++i)
for (int j = ; j <= M; ++j)
(ANS += F[i][j] * F[i][M - j]) %= P;
printf("%d\n", ANS);
}
}
@Author: YouSiki
BZOJ 3612: [Heoi2014]平衡的更多相关文章
- BZOJ 3612: [Heoi2014]平衡( dp )
枚举Fl, 就变成一个整数划分的问题了...f(i,j) = f(i-j,j-1)+f(i-j,j)-f(i-N-1,j-1)递推.f(i,j)表示数i由j个不同的数组成,且最大不超过N的方案数 -- ...
- bzoj 3612 [Heoi2014]平衡——整数划分(dp)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3612 因为力矩的缘故,变成了整数划分. 学习到了整数划分.就是那个图一样的套路.https: ...
- bzoj 3612: [Heoi2014]平衡【整数划分dp】
其实就是-n~n中求选k个不同的数,和为0的方案数 学到了新姿势叫整数划分,具体实现是dp 详见:https://blog.csdn.net/Vmurder/article/details/42551 ...
- [HEOI2014]平衡
[HEOI2014]平衡 转化为求选择k个数,和为(n+1)*k的方案数 保证,每个数[1,2*n+1]且最多选择一次. 限制k个很小,所以用整数划分的第二种方法 f[i][j],用了i个,和为j 整 ...
- BZOJ3612 [Heoi2014]平衡 整数划分
[Heoi2014]平衡 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 348 Solved: 273[Submit][Status][Discus ...
- P4104 [HEOI2014]平衡
友情提醒:取模太多真的会TLE!!! P4104 [HEOI2014]平衡 题解 本题属于 DP-整数划分 类问题中的 把整数 n 划分成 k 个不相同不大于 m 的正整数问题 设置DP状态 f[ ...
- bzoj 3611 [Heoi2014]大工程(虚树+DP)
3611: [Heoi2014]大工程 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 408 Solved: 190[Submit][Status] ...
- 【递推】Bzoj3612[Heoi2014]平衡
Description 下课了,露露.花花和萱萱在课桌上用正三棱柱教具和尺子摆起了一个“跷跷板”. 这个“跷跷板”的结构是这样的:底部是一个侧面平行于地平面的正三棱柱教具, 上面 摆着一个尺 ...
- [HEOI2014]平衡(整数划分数)
下课了,露露.花花和萱萱在课桌上用正三棱柱教具和尺子摆起了一个“跷跷板”. 这个“跷跷板”的结构是这样的:底部是一个侧面平行于地平面的正三棱柱教具,上面 摆着一个尺子,尺子上摆着若干个相同的橡皮.尺子 ...
随机推荐
- anglarjs1.6.3+owin 实现验证之一:统一拒绝非登录访问。
1.anglarjs端在app.js(即anglar的入口js),注册.factory("messageService",使得每次来自html客户端的请求都能带有一个值,如AKey ...
- 扩展 WPF 动画类
原文:扩展 WPF 动画类 扩展 WPF 动画类 Charles ...
- 通过Jekins执行bat脚本始终无法完成
问题描述 最近在研究Devops工作流,中间有一个环节是自动发布版本的,我们使用PipeLine调用Jekins任务,最终执行bat脚本,但在执行Jekins任务的时候,任务总是完成不了,导致DBA在 ...
- Luogu P3398 仓鼠找sugar
这还是一道比较好的树剖题(去你的树剖,LCA即可) 这里主要讲两种思路,其实都是很基本也很经典的 1 树链剖分 还是先讲一下这种算法吧,虽然写起来很烦(不过感觉写多了就习惯了,而且还有一种莫名的快感) ...
- R绘图 第十二篇:散点图(高级)
散点图用于描述两个连续性变量间的关系,三个变量之间的关系可以通过3D图形或气泡来展示,多个变量之间的两两关系可以通过散点图矩阵来展示. 一,添加了最佳拟合曲线的散点图 使用基础函数plot(x,y)来 ...
- 浅谈java反射机制
目录 什么是反射 初探 初始化 类 构造函数 属性 方法 总结 思考 什么是反射 JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意 ...
- Webpack 2 视频教程 002 - NodeJS 安装与配置
原文发表于我的技术博客 这是我免费发布的高质量超清「Webpack 2 视频教程」. Webpack 作为目前前端开发必备的框架,Webpack 发布了 2.0 版本,此视频就是基于 2.0 的版本讲 ...
- CentOS7下安装Docker-Compose操作记录
Docker-Compose是一个部署多个容器的简单但是非常必要的工具.安装Docker-Compose之前,请先安装 python-pip 一.安装 python-pip [root@workben ...
- 一个数据表通过另一个表更新数据(在UPDAT语句中使用FROM子句)
在sql server中,update可以根据一个表的信息去更新另一个表的信息. 首先看一下语法: update A SET 字段1=B表字段表达式, 字段2=B表字段表达式 from B WHE ...
- Ubuntu14.04安装PyMuPDF
最近写的一个东西需要将pdf转成图片然后放在网页上展示,找到了个非常好用的轮子叫做PyMuPDF,在windows上测试的时候跑的666,在ubuntu上安装依赖的时候,简直万脸懵逼.github上给 ...