洛谷 P4137 Rmq Problem /mex 解题报告
P4137 Rmq Problem /mex
题意
给一个长为\(n(\le 10^5)\)的数列\(\{a\}\),有\(m(\le 10^5)\)个询问,每次询问区间的\(mex\)
可以莫队然后对值域分块,这样求\(mex\)的复杂度就正确了
一种更优的做法是按值域建可持久化线段树,对每个节点维护当前值域区间的最小出现位置,然后查询的时候就从\(r\)的那棵树一直尽量往左边走就好了
Code:
#include <cstdio>
#include <cstring>
const int N=2e5+10;
#define ls ch[now][0]
#define rs ch[now][1]
#define ols ch[las][0]
#define ors ch[las][1]
int mi[N*30],ch[N*30][2],root[N],n,m,tot;
int min(int x,int y){return x<y?x:y;}
void rebuild(int las,int &now,int l,int r,int p,int d)
{
now=++tot;
if(l==r){mi[now]=d;return;}
int mid=l+r>>1;
if(p<=mid) rebuild(ols,ls,l,mid,p,d),rs=ors;
else ls=ols,rebuild(ors,rs,mid+1,r,p,d);
mi[now]=min(mi[ls],mi[rs]);
}
int query(int now,int l,int r,int lim)
{
if(l==r) return l;
int mid=l+r>>1;
if(mi[ls]<lim) return query(ls,l,mid,lim);
else return query(rs,mid+1,r,lim);
}
void build(int &now,int l,int r)
{
mi[now=++tot]=0;
if(l==r) return;
int mid=l+r>>1;
build(ls,l,mid),build(rs,mid+1,r);
}
int main()
{
scanf("%d%d",&n,&m);
memset(mi,0x3f,sizeof mi);
build(root[0],1,++n);
for(int a,i=1;i<n;i++)
{
scanf("%d",&a);
if(a<n) rebuild(root[i-1],root[i],1,n,a+1,i);
else root[i]=root[i-1];
}
for(int l,r,i=1;i<=m;i++)
{
scanf("%d%d",&l,&r);
printf("%d\n",query(root[r],1,n,l)-1);
}
return 0;
}
2019.1.28
洛谷 P4137 Rmq Problem /mex 解题报告的更多相关文章
- 洛谷 P4137 Rmq Problem / mex
https://www.luogu.org/problemnew/show/P4137 只会log^2的带修主席树.. 看了题解,发现有高妙的一个log做法:权值线段树上,设数i对应的值ma[i]为数 ...
- 洛谷P4137 Rmq Problem / mex(莫队)
题目描述 有一个长度为n的数组{a1,a2,…,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 输入输出格式 输入格式: 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问l, ...
- 洛谷 P4137 Rmq Problem/mex 题解
题面 首先,由于本人太菜,不会莫队,所以先采用主席树的做法: 离散化是必须环节,否则动态开点线段数都救不了你: 我们对于每个元素i,插入到1~(i-1)的主席树中,第i颗线段树(权值线段树)对于一个区 ...
- P4137 Rmq Problem / mex (莫队)
题目 P4137 Rmq Problem / mex 解析 莫队算法维护mex, 往里添加数的时候,若添加的数等于\(mex\),\(mex\)就不能等于这个值了,就从这个数开始枚举找\(mex\): ...
- 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex
题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...
- 洛谷_Cx的故事_解题报告_第四题70
1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h> struct node { long x,y,c; ...
- 洛谷 P2317 [HNOI2005]星际贸易 解题报告
P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...
- 洛谷 P3802 小魔女帕琪 解题报告
P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
随机推荐
- Luogu P3374 【模板】树状数组 1
真正的模板题. 树状数组的思想很简单(不如说背代码更简单),每个节点记录多个节点的信息(每个点存x&(-x)个). 道理可以参见很多大佬的博客,最后前缀和的思想搞一下就好了.不想说也不会说. ...
- 扫描shader
游戏中经常需要制作出白光扫描的效果,这道光在透明区域不会显示.如果用图片叠加可能透明区域不太好处理,这里可通过shader实现. Shader "Custom/LogoShader" ...
- springboot @Value 获取计算机中绝对路径文件的内容
默认情况下使用 @Value("aaa.txt") private Resource txtResource; 这样获取到的是项目classpath 下的 aaa.txt 如果想获 ...
- C# 全屏坐标及区域坐标获取。自定义光标及系统光标描边捕捉显示。
最近手头工作比较轻松了一点就继续研究和完善之前的录屏软件,使用AForge最大的问题在于:最原始的只能够录全屏,而自定义的录屏需要更改非常多的细节:like follows: 1.需要支持区域化录屏: ...
- [译]Kubernetes 分布式应用部署和人脸识别 app 实例
原文地址:KUBERNETES DISTRIBUTED APPLICATION DEPLOYMENT WITH SAMPLE FACE RECOGNITION APP 原文作者:skarlso 译文出 ...
- Docker网络解决方案 - Flannel部署记录
Docker跨主机容器间网络通信实现的工具有Pipework.Flannel.Weave.Open vSwitch(虚拟交换机).Calico, 其中Pipework.Weave.Flannel,三者 ...
- mysql启动后随即关闭问题解决(ibdata1文件损坏导致)
机房一台服务器上的mysql运行一段时间了,突然出现了一个很奇怪的现象:重启后无法恢复了!准确情况是:启动mysql后随即就又关闭了. 查看mysql错误日志如下: 160920 22:41:41 m ...
- C_数据结构_循环实现求阶乘
# include <stdio.h> int main(void) { int val; printf("请输入一个数字:"); printf("val = ...
- Python-dict-12
字典 Why:咱们目前已经学习到的容器型数据类型只有list,那么list够用?他有什么缺点呢? 1. 列表可以存储大量的数据类型,但是如果数据量大的话,他的查询速度比较慢. 2. 列表只能按照顺序存 ...
- B. Diagonal Walking v.2
链接 [https://i.cnblogs.com/EditPosts.aspx?opt=1] 题意 二维平面从原点出发k步,要到达的点(x,y),每个位置可以往8个方位移动,问到达目的地最多可以走多 ...