洛谷P2257 YY的GCD
今日份是数论
大概是。。从小学奥数到渐渐毒瘤
那就简单列一下目录【大雾
同余 质数密度 唯一分解定理 互质
完全剩余系 简化剩余系 欧拉函数 逆元 斐蜀定理
阶(及其性质) 欧拉定理 费马小定理 原根 调和级数
欧拉函数推广到积性函数 完全积性函数
莫比乌斯函数 莫比乌斯反演
狄利克雷卷积 杜教筛 Lucas定理
回到这道题
题意:
给出n, m ∈ [1, 1e7] ,求有多少对(x, y)
满足x ∈ [1, n], y ∈ [1, m] 且 gcd(x, y) 为质数
字丑【痛心
附上代码
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 1e7 + ; int prm[N], mu[N], ps;
bool ism[N];
long long res[N], g[N]; inline void calc(int n){
mu[] = ;
for(int i = ; i <= n; i++){
if(!ism[i]) {prm[++ps] = i; mu[i] = -;}
for(int j = ; j <= ps && prm[j] * i <= n; j++){
ism[prm[j] * i] = ;
if(!(i % prm[j])) break;
mu[prm[j] * i] = -mu[i];
}
}
for(int i = ; i <= ps; i++)
for(int j = ; j * prm[i] <= n; j++)
g[j * prm[i]] += mu[j];
for(int i = ; i <= n; i++)
res[i] = res[i - ] + (long long) g[i];
} int main(){
int T; scanf("%d", &T);
long long ans;
int n, m;
calc(1e7);
while(T--){
scanf("%d%d", &n, &m);
if(n > m) swap(n, m);
ans = ;
int i = , j;
while(i <= n){
j = min(n / (n / i), m / (m / i));
ans += (long long)(n / i) * (m / i) * (res[j] - res[i - ]);
i = j + ;
}
printf("%lld\n", ans);
}
return ;
}
洛谷P2257 YY的GCD的更多相关文章
- 洛谷 P2257 YY的GCD
洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans ...
- 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...
- 洛谷 P2257 YY的GCD 题解
原题链接 庆祝: 数论紫题 \(T4\) 达成! 莫比乌斯 \(T1\) 达成! yy 真是个 神犇 前记 之前我觉得: 推式子,直接欧拉筛,筛出个 \(\phi\),然后乱推 \(\gcd\) 就行 ...
- 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- 洛谷P2257 YY的GCD(莫比乌斯反演)
传送门 原来……莫比乌斯反演是这么用的啊……(虽然仍然不是很明白) 首先,题目所求如下$$\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=prim]$$ 我们设$f(d)$表示$g ...
- 解题:洛谷2257 YY的GCD
题面 初见莫比乌斯反演 有一个套路是关于GCD的反演经常设$f(d)=\sum_{gcd(i,j)==d},g(d)=\sum_{d|gcd(i,j)}$,然后推推推 $\sum\limits_{i= ...
- [洛谷2257]YY的GCD 题解
整理题目转化为数学语言 题目要我们求: \[\sum_{i=1}^n\sum_{i=1}^m[gcd(i,j)=p]\] 其中 \[p\in\text{质数集合}\] 这样表示显然不是很好,所以我们需 ...
- 洛谷 2257 - YY的GCD
莫比乌斯反演半模板题 很容易可以得到 \[Ans = \sum\limits_{p \in prime} \sum\limits_{d = 1}^{\min (\left\lfloor\frac{a} ...
随机推荐
- Java使用数字证书加密通信(加解密/加签验签)
本文中使用的Base64Utils.java可参考:http://www.cnblogs.com/shindo/p/6346618.html 证书制作方法可参考:http://www.cnblogs. ...
- LOJ2538 PKUWC2018 Slay the Spire DP
传送门 不想放题面了,咕咕咕咕咕 这个期望明明是用来吓人的,其实要算的就是所有方案的最多伤害的和. 首先可以知道的是,能出强化牌就出强化牌(当然最后要留一张攻击牌出出去),且数字尽量大 所以说在强化牌 ...
- Luogu P2522 [HAOI2011]Problem b
如果你做过[Luogu P3455 POI2007]ZAP-Queries就很好办了,我们发现那一题求的是\(\sum_{i=1}^a\sum_{j=1}^b[\gcd(i,j)=d]\),就是这道题 ...
- [Spark][Python]Spark Join 小例子
[training@localhost ~]$ hdfs dfs -cat people.json {"name":"Alice","pcode&qu ...
- 使用 cron 定时任务实现 war 自动化发布
autoRelease.sh #!/bin/sh /home/tomcat/bin/shutdown.sh echo "tomcat stoped" cd /home/tomcat ...
- Docker 小记 — Docker Engine
前言 用了 Docker 方才觉得生产环境终于有了他该有的样子,就像集装箱普及之后大型货轮的价值才逐渐体现出来,Docker 详细说明可查阅"官方文档".本篇为 Docker En ...
- WordPress更新提示无法创建目录的解决方案
上一篇我们说到无法连接FTP服务器,我们已经完美的解决了,然后...发现...还是无法更新,啥情况??? 提示为无法创建目录 原因是执行更新程序的是www用户, 解决方案如下: 需要把插件或主程序下载 ...
- Unity接入Steamworks
一.将scrpts/Steamworks.net/SteamManager组件添加到游戏物体上 二.修改SteamManager的代码为游戏的id如图所示 三.Unity,打开项目根目录,修改stea ...
- Linux下部署Samba服务环境的操作记录
关于Linux和Windows系统之间的文件传输,很多人选择使用FTP,相对较安全,但是有时还是会出现一些问题,比如上传文件时,文件名莫名出现乱码,文件大小改变等问题.相比较来说,使用Samba作为文 ...
- Centos6.9下RabbitMQ集群部署记录
之前简单介绍了CentOS下单机部署RabbltMQ环境的操作记录,下面详细说下RabbitMQ集群知识,RabbitMQ是用erlang开发的,集群非常方便,因为erlang天生就是一门分布式语言, ...