【转载请注明出处】http://www.cnblogs.com/mashiqi

2017/06/25

设$A$是$n$维线性空间$V$上的线性变换,它的特征值与相应的代数重数分别为$\lambda_i,m_i~(1=1,\cdots,r)$。为简化阅读,我们设$K_i = \ker(\lambda_i I - A)^{m_i},~ M_i = \operatorname{Im}(\lambda_i I - A)^{m_i}$。于是有如下结论:

\begin{align*}
& 1)~ A(K_i) \subseteq K_i,~ A(M_i) \subseteq M_i, \\
& 2)~ V = K_i \oplus M_i, \\
& 3)~ \det(\lambda I - A|_{K_i}) = (\lambda - \lambda_i)^{m_i},~ \dim(K_i) = m_i.
\end{align*}

由于$\ker(\lambda_i I - A)^{m_i}$和$\operatorname{Im}(\lambda_i I - A)^{m_i}$的正交性,因此$V$首先可以分解为各个$\ker(\lambda_i I - A)^{m_i}$的直和,这是“空间第一分解”。但仅仅到这一步,还得不出Jordan标准形。

在每一个$\ker(\lambda_i I - A)^{m_i}$上还可以再进行分解。由于在线性变换$A$在$m$维子空间$\ker(\lambda_i I - A)^{m_i}$上的行列式为$\det(\lambda I - A|_{K_i}) = (\lambda - \lambda_i)^{m_i}$,因此,根据Hamilton-Cayley定理,一定存在一个整数$m_0 \leq m_i$,使得$(A - \lambda_i I)^{m_0} = 0$。为了方便,我们记$T = A - \lambda_i I$,则$T^{m_0} = T \cdot T^{m_0-1} = 0$。因此$$\operatorname{Im}T^{m_0-1} \subseteq \ker T.$$我们可以在$\ker(\lambda_i I - A)^{m_i}$找到几个向量$\{p_1, p_2, \cdots , p_a\}$使得$\ker(\lambda_i I - A)^{m_i} = \operatorname{Span }\{T^{m_0-1}p_1, T^{m_0-1}p_2, \cdots , T^{m_0-1}p_a\}$。我们可以很容易的证明

\begin{align*}
\{& T^0 p_1, T^0 p_2, \cdots , T^0 p_a, \\
& T^1 p_1, T^1 p_2, \cdots , T^1 p_a, \\
& \qquad\quad\vdots\qquad\qquad\vdots \\
& T^{m_0-1}p_1, T^{m_0-1}p_2, \cdots , T^{m_0-1}p_a\}.
\end{align*}

线性无关。注意,若将上面的这$m_0 \times a$个线性无关的向量作为基底的话,那么每一列$\{T^0 p_1, T^1 p_1, \cdots, T^{m_0-1}p_1\}$在$A$下的变换都可以用Jordan标准形表示出来。若上面的这$m_0 \times a$个线性无关的向量还不足以充满整个$\ker(\lambda_i I - A)^{m_i}$的话,那再继续扩充它们,至于怎么扩种,稍微复杂了一点。这就是“空间第二分解”。

以上知识足以使得我对Jordan标准形形成一个较为感性的认识了。

关于Jordan标准形的更多相关文章

  1. Jordan标准形

    一.引入 前面已经指出,一切n阶矩阵A可以分成许多相似类.今要在与A相似的全体矩阵中,找出一个较简单的矩阵来作为相似类的标准形.当然以对角矩阵作为标准形最好,可惜不是每一个矩阵都能与对角矩阵相似.因此 ...

  2. 实 Jordan 标准型和实 Weyr 标准型

    将学习到什么 本节讨论关于实矩阵的实形式的 Jordan 标准型,也讨论关于复矩阵的另外一种形式的 Jordan 标准型,因为它在与交换性有关的问题中很有用.   实 Jordan 标准型 假设 \( ...

  3. [转载] $\mathrm{Jordan}$标准型的介绍

    本文转载自陈洪葛的博客$,$ 而实际上来自xida博客朝花夕拾$,$ 可惜该博客已经失效 $\mathrm{Jordan}$ 标准形定理是线性代数中的基本定理$,$ 专门为它写一篇长文好像有点多余$: ...

  4. [问题2014A12] 解答

    [问题2014A12]  解答 将问题转换成几何的语言: 设 \(\varphi,\psi\) 是 \(n\) 维线性空间 \(V\) 上的线性变换, 满足 \(\varphi\psi=\psi\va ...

  5. [问题2014A13] 解答

    [问题2014A13]  解答 先引入两个简单的结论. 结论 1  设 \(\varphi\) 是 \(n\) 维线性空间 \(V\) 上的线性变换, 若存在正整数 \(k\), 使得 \(\math ...

  6. 复旦大学2015--2016学年第二学期高等代数II期末考试情况分析

    一.期末考试成绩班级前几名 胡晓波(90).杨彦婷(88).宋卓卿(85).唐指朝(84).陈建兵(83).宋沛颖(82).王昊越(81).白睿(80).韩沅伯(80).王艺楷(80).张漠林(80) ...

  7. 复旦大学2014--2015学年第二学期(14级)高等代数II期末考试第八大题解答

    八.(本题10分)  设 $A,B$ 为 $n$ 阶半正定实对称阵, 求证: $AB$ 可对角化. 分析  证明分成两个步骤: 第一步, 将 $A,B$ 中的某一个简化为合同标准形来考虑问题, 这是矩 ...

  8. [问题2014A10] 复旦高等代数 I(14级)每周一题(第十二教学周)

    [问题2014A10]  设 \(A\) 为 \(n\) 阶实方阵满足 \(AA'=I_n\) (即 \(A\) 为 \(n\) 阶正交阵), 证明: \[\mathrm{rank}(I_n-A)=\ ...

  9. 机器学习——logistic回归,鸢尾花数据集预测,数据可视化

    0.鸢尾花数据集 鸢尾花数据集作为入门经典数据集.Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理.Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集.数据集包含150个数 ...

随机推荐

  1. Docker Kubernetes 常用命令

    Docker Kubernetes 常用命令 增 # 通过文件名或标准输入创建资源. kubectl create # 读取指定文件内容,进行创建.(配置文件可指定json,yaml文件). kube ...

  2. Linux-Centos7 安装图形界面

    1.首先安装X(X Window System),命令为 :yum groupinstall "X Window System" 回车(注意有引号) 2.查看桌面列表 : yum ...

  3. final修饰符与多态

    知识点一.final 最终的可以修饰属性.方法.类1.final修饰的属性,表示常量,初始化以后值不能改变.final修饰引用数据类型的变量,引用地址不能改变.2.final修饰类,不能被继承.比如: ...

  4. Bugku-CTF之flag在index里

      Day15 flag在index里 http://123.206.87.240:8005/post/      

  5. 复旦大学2016--2017学年第一学期(16级)高等代数I期末考试第七大题解答

    七.(本题10分)  设 $A,B$ 均为 $m\times n$ 阶实矩阵, 满足 $A'B+B'A=0$. 证明: $$r(A+B)\geq\max\{r(A),r(B)\},$$并且等号成立的充 ...

  6. MyBatis进阶(一)

    MyBatis参数传递 1. MyBatis单参数传递 单参数传递不做特殊处理,直接取出参数值赋给xml文件,如#{id} 2. MyBatis多参数传递 多参数传递默认使用{arg1, arg0, ...

  7. (转载)UnityShader学习笔记(七) 让贴图纹理动起来(河流瀑布特效、精灵序列帧实现)

    大家好,我是Zander.这一章我们将使用纹理贴图实现动画.混合和真实特效来达到理想的效果. 纹理贴图可以使我们的着色器快速的实现逼真的效果,但是如果添加的纹理贴图过多,会非常影响游戏性能,特别是在移 ...

  8. Linux 常用命令——文件处理命令

    Linux 常用命令 Linux Linux命令格式 命令格式:命令 [-选项] [参数] 例如:ls -a /etc 说明: 1.当有多个选项时,可以写在一起 2.简化选项等于完整选项 -a = - ...

  9. zookeeper之 zkServer.sh命令、zkCli.sh命令、四字命令

    一.zkServer.sh 1.查看 zkServer.sh 帮助信息[root@bigdata05 bin]# ./zkServer.sh helpZooKeeper JMX enabled by ...

  10. Codeforces 1100 F - Ivan and Burgers

    F - Ivan and Burgers 思路:线性基+贪心,保存线性基中每一位的最后一个 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #p ...