在linux 没有实现epoll事件驱动机制之前,我们一般选择用select或者poll等IO多路复用的方法来实现并发服务程序。在大数据、高并发、集群等一些名词唱得火热之年代,select和poll的用武之地越来越有限,风头已经被epoll占尽。

select()和poll() IO多路复用模型

select的缺点:

  1. 单个进程能够监视的文件描述符的数量存在最大限制,通常是1024,当然可以更改数量,但由于select采用轮询的方式扫描文件描述符,文件描述符数量越多,性能越差;(在linux内核头文件中,有这样的定义:#define __FD_SETSIZE 1024)
  2. 内核 / 用户空间内存拷贝问题,select需要复制大量的句柄数据结构,产生巨大的开销;
  3. select返回的是含有整个句柄的数组,应用程序需要遍历整个数组才能发现哪些句柄发生了事件;
  4. select的触发方式是水平触发,应用程序如果没有完成对一个已经就绪的文件描述符进行IO操作,那么之后每次select调用还是会将这些文件描述符通知进程。

相比select模型,poll使用链表保存文件描述符,因此没有了监视文件数量的限制,但其他三个缺点依然存在。

拿select模型为例,假设我们的服务器需要支持100万的并发连接,则在__FD_SETSIZE 为1024的情况下,则我们至少需要开辟1k个进程才能实现100万的并发连接。除了进程间上下文切换的时间消耗外,从内核/用户空间大量的无脑内存拷贝、数组轮询等,是系统难以承受的。因此,基于select模型的服务器程序,要达到10万级别的并发访问,是一个很难完成的任务。

因此,该epoll上场了。

epoll IO多路复用模型实现机制

由于epoll的实现机制与select/poll机制完全不同,上面所说的 select的缺点在epoll上不复存在。

设想一下如下场景:有100万个客户端同时与一个服务器进程保持着TCP连接。而每一时刻,通常只有几百上千个TCP连接是活跃的(事实上大部分场景都是这种情况)。如何实现这样的高并发?

epoll的设计和实现与select完全不同。epoll通过在Linux内核中申请一个简易的文件系统(文件系统一般用什么数据结构实现?B+树)。把原先的select/poll调用分成了3个部分:

  1. 调用epoll_create()建立一个epoll对象(在epoll文件系统中为这个句柄对象分配资源)
  2. 调用epoll_ctl向epoll对象中添加这100万个连接的套接字
  3. 调用epoll_wait收集发生的事件的连接

如此一来,要实现上面说是的场景,只需要在进程启动时建立一个epoll对象,然后在需要的时候向这个epoll对象中添加或者删除连接。同时,epoll_wait的效率也非常高,因为调用epoll_wait时,并没有一股脑的向操作系统复制这100万个连接的句柄数据,内核也不需要去遍历全部的连接。

下面来看看Linux内核具体的epoll机制实现思路。

当某一进程调用epoll_create方法时,Linux内核会创建一个eventpoll结构体,这个结构体中有两个成员与epoll的使用方式密切相关。eventpoll结构体如下所示:

struct eventpoll{
....
/*红黑树的根节点,这颗树中存储着所有添加到epoll中的需要监控的事件*/
struct rb_root rbr;
/*双链表中则存放着将要通过epoll_wait返回给用户的满足条件的事件*/
struct list_head rdlist;
....
};

每一个epoll对象都有一个独立的eventpoll结构体,用于存放通过epoll_ctl方法向epoll对象中添加进来的事件。这些事件都会挂载在红黑树中,如此,重复添加的事件就可以通过红黑树而高效的识别出来(红黑树的插入时间效率是lgn,其中n为树的高度)。

而所有添加到epoll中的事件都会与设备(网卡)驱动程序建立回调关系,也就是说,当相应的事件发生时会调用这个回调方法。这个回调方法在内核中叫ep_poll_callback,它会将发生的事件添加到rdlist双链表中。

在epoll中,对于每一个事件,都会建立一个epitem结构体,如下所示:

struct epitem{
struct rb_node rbn;//红黑树节点
struct list_head rdllink;//双向链表节点
struct epoll_filefd ffd; //事件句柄信息
struct eventpoll *ep; //指向其所属的eventpoll对象
struct epoll_event event; //期待发生的事件类型
}

当调用epoll_wait检查是否有事件发生时,只需要检查eventpoll对象中的rdlist双链表中是否有epitem元素即可。如果rdlist不为空,则把发生的事件复制到用户态,同时将事件数量返回给用户。

从上面的讲解可知:通过红黑树和双链表数据结构,并结合回调机制,造就了epoll的高效。

OK,讲解完了Epoll的机理,我们便能很容易掌握epoll的用法了。一句话描述就是:三步曲。

  1. epoll_create()系统调用。此调用返回一个句柄,之后所有的使用都依靠这个句柄来标识。
  2. epoll_ctl()系统调用。通过此调用向epoll对象中添加、删除、修改感兴趣的事件,返回0标识成功,返回-1表示失败。
  3. epoll_wait()系统调用。通过此调用收集收集在epoll监控中已经发生的事件。

最后,附上一个epoll编程实例。(作者为sparkliang)

//
// a simple echo server using epoll in linux
//
// 2009-11-05
// 2013-03-22:修改了几个问题,1是/n格式问题,2是去掉了原代码不小心加上的ET模式;
// 本来只是简单的示意程序,决定还是加上 recv/send时的buffer偏移
// by sparkling
//
#include <sys/socket.h>
#include <sys/epoll.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>
#include <iostream>
using namespace std;
#define MAX_EVENTS 500
struct myevent_s
{
int fd;
void (*call_back)(int fd, int events, void *arg);
int events;
void *arg;
int status; // 1: in epoll wait list, 0 not in
char buff[128]; // recv data buffer
int len, s_offset;
long last_active; // last active time
};
// set event
void EventSet(myevent_s *ev, int fd, void (*call_back)(int, int, void*), void *arg)
{
ev->fd = fd;
ev->call_back = call_back;
ev->events = 0;
ev->arg = arg;
ev->status = 0;
bzero(ev->buff, sizeof(ev->buff));
ev->s_offset = 0;
ev->len = 0;
ev->last_active = time(NULL);
}
// add/mod an event to epoll
void EventAdd(int epollFd, int events, myevent_s *ev)
{
struct epoll_event epv = {0, {0}};
int op;
epv.data.ptr = ev;
epv.events = ev->events = events;
if(ev->status == 1){
op = EPOLL_CTL_MOD;
}
else{
op = EPOLL_CTL_ADD;
ev->status = 1;
}
if(epoll_ctl(epollFd, op, ev->fd, &epv) < 0)
printf("Event Add failed[fd=%d], evnets[%d]\n", ev->fd, events);
else
printf("Event Add OK[fd=%d], op=%d, evnets[%0X]\n", ev->fd, op, events);
}
// delete an event from epoll
void EventDel(int epollFd, myevent_s *ev)
{
struct epoll_event epv = {0, {0}};
if(ev->status != 1) return;
epv.data.ptr = ev;
ev->status = 0;
epoll_ctl(epollFd, EPOLL_CTL_DEL, ev->fd, &epv);
}
int g_epollFd;
myevent_s g_Events[MAX_EVENTS+1]; // g_Events[MAX_EVENTS] is used by listen fd
void RecvData(int fd, int events, void *arg);
void SendData(int fd, int events, void *arg);
// accept new connections from clients
void AcceptConn(int fd, int events, void *arg)
{
struct sockaddr_in sin;
socklen_t len = sizeof(struct sockaddr_in);
int nfd, i;
// accept
if((nfd = accept(fd, (struct sockaddr*)&sin, &len)) == -1)
{
if(errno != EAGAIN && errno != EINTR)
{
}
printf("%s: accept, %d", __func__, errno);
return;
}
do
{
for(i = 0; i < MAX_EVENTS; i++)
{
if(g_Events[i].status == 0)
{
break;
}
}
if(i == MAX_EVENTS)
{
printf("%s:max connection limit[%d].", __func__, MAX_EVENTS);
break;
}
// set nonblocking
int iret = 0;
if((iret = fcntl(nfd, F_SETFL, O_NONBLOCK)) < 0)
{
printf("%s: fcntl nonblocking failed:%d", __func__, iret);
break;
}
// add a read event for receive data
EventSet(&g_Events[i], nfd, RecvData, &g_Events[i]);
EventAdd(g_epollFd, EPOLLIN, &g_Events[i]);
}while(0);
printf("new conn[%s:%d][time:%d], pos[%d]\n", inet_ntoa(sin.sin_addr),
ntohs(sin.sin_port), g_Events[i].last_active, i);
}
// receive data
void RecvData(int fd, int events, void *arg)
{
struct myevent_s *ev = (struct myevent_s*)arg;
int len;
// receive data
len = recv(fd, ev->buff+ev->len, sizeof(ev->buff)-1-ev->len, 0);
EventDel(g_epollFd, ev);
if(len > 0)
{
ev->len += len;
ev->buff[len] = '\0';
printf("C[%d]:%s\n", fd, ev->buff);
// change to send event
EventSet(ev, fd, SendData, ev);
EventAdd(g_epollFd, EPOLLOUT, ev);
}
else if(len == 0)
{
close(ev->fd);
printf("[fd=%d] pos[%d], closed gracefully.\n", fd, ev-g_Events);
}
else
{
close(ev->fd);
printf("recv[fd=%d] error[%d]:%s\n", fd, errno, strerror(errno));
}
}
// send data
void SendData(int fd, int events, void *arg)
{
struct myevent_s *ev = (struct myevent_s*)arg;
int len;
// send data
len = send(fd, ev->buff + ev->s_offset, ev->len - ev->s_offset, 0);
if(len > 0)
{
printf("send[fd=%d], [%d<->%d]%s\n", fd, len, ev->len, ev->buff);
ev->s_offset += len;
if(ev->s_offset == ev->len)
{
// change to receive event
EventDel(g_epollFd, ev);
EventSet(ev, fd, RecvData, ev);
EventAdd(g_epollFd, EPOLLIN, ev);
}
}
else
{
close(ev->fd);
EventDel(g_epollFd, ev);
printf("send[fd=%d] error[%d]\n", fd, errno);
}
}
void InitListenSocket(int epollFd, short port)
{
int listenFd = socket(AF_INET, SOCK_STREAM, 0);
fcntl(listenFd, F_SETFL, O_NONBLOCK); // set non-blocking
printf("server listen fd=%d\n", listenFd);
EventSet(&g_Events[MAX_EVENTS], listenFd, AcceptConn, &g_Events[MAX_EVENTS]);
// add listen socket
EventAdd(epollFd, EPOLLIN, &g_Events[MAX_EVENTS]);
// bind & listen
sockaddr_in sin;
bzero(&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(port);
bind(listenFd, (const sockaddr*)&sin, sizeof(sin));
listen(listenFd, 5);
}
int main(int argc, char **argv)
{
unsigned short port = 12345; // default port
if(argc == 2){
port = atoi(argv[1]);
}
// create epoll
g_epollFd = epoll_create(MAX_EVENTS);
if(g_epollFd <= 0) printf("create epoll failed.%d\n", g_epollFd);
// create & bind listen socket, and add to epoll, set non-blocking
InitListenSocket(g_epollFd, port);
// event loop
struct epoll_event events[MAX_EVENTS];
printf("server running:port[%d]\n", port);
int checkPos = 0;
while(1){
// a simple timeout check here, every time 100, better to use a mini-heap, and add timer event
long now = time(NULL);
for(int i = 0; i < 100; i++, checkPos++) // doesn't check listen fd
{
if(checkPos == MAX_EVENTS) checkPos = 0; // recycle
if(g_Events[checkPos].status != 1) continue;
long duration = now - g_Events[checkPos].last_active;
if(duration >= 60) // 60s timeout
{
close(g_Events[checkPos].fd);
printf("[fd=%d] timeout[%d--%d].\n", g_Events[checkPos].fd, g_Events[checkPos].last_active, now);
EventDel(g_epollFd, &g_Events[checkPos]);
}
}
// wait for events to happen
int fds = epoll_wait(g_epollFd, events, MAX_EVENTS, 1000);
if(fds < 0){
printf("epoll_wait error, exit\n");
break;
}
for(int i = 0; i < fds; i++){
myevent_s *ev = (struct myevent_s*)events[i].data.ptr;
if((events[i].events&EPOLLIN)&&(ev->events&EPOLLIN)) // read event
{
ev->call_back(ev->fd, events[i].events, ev->arg);
}
if((events[i].events&EPOLLOUT)&&(ev->events&EPOLLOUT)) // write event
{
ev->call_back(ev->fd, events[i].events, ev->arg);
}
}
}
// free resource
return 0;
}

深度理解select、poll和epoll的更多相关文章

  1. Linux下select, poll和epoll IO模型的详解

    http://blog.csdn.net/tianmohust/article/details/6677985 一).Epoll 介绍 Epoll 可是当前在 Linux 下开发大规模并发网络程序的热 ...

  2. I/O复用中的 select poll 和 epoll

    I/O复用中的 select poll 和 epoll: 这里有一些不错的资料: I/O多路复用技术之select模型: http://blog.csdn.net/nk_test/article/de ...

  3. (转)Linux下select, poll和epoll IO模型的详解

    Linux下select, poll和epoll IO模型的详解 原文:http://blog.csdn.net/tianmohust/article/details/6677985 一).Epoll ...

  4. linux select poll and epoll

    这里以socket文件来阐述它们之间的区别,假设现在服务器端有100 000个连接,即已经创建了100 000个socket. 1 select和poll 在我们的线程中,我们会弄一个死循环,在循环里 ...

  5. Select,poll,epoll复用

    Select,poll,epoll复用 1)select模块以列表的形式接受四个参数,分别是可读对象,可写对象,产生异常的对象,和超时设置.当监控符对象发生变化时,select会返回发生变化的对象列表 ...

  6. 聊聊select, poll 和 epoll

    聊聊select, poll 和 epoll 假设项目上需要实现一个TCP的客户端和服务器从而进行跨机器的数据收发,我们很可能翻阅一些资料,然后写出如下的代码. 服务端 void func(int s ...

  7. select poll和 epoll

    select .poll.epoll 都是多路io复用的机制,i/o多路复用就通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知乡音的程序进行相应的读写操作.但s ...

  8. 1 select,poll和epoll

    其实所有的I/O都是轮询的方法,只不过实现的层面不同罢了. 基本上select有3个缺点: 连接数受限 查找配对速度慢 数据由内核拷贝到用户态 poll改善了第一个缺点 epoll改了三个缺点. se ...

  9. select poll和epoll

    select poll epoll都是IO多路复用机制.这里的复用其实可以理解为复用的线程,即一个(或者较少的)线程完成多个IO的读写.这里总结下这三个函数的区别. 1 select 1.1 sele ...

随机推荐

  1. python之内置装饰器(property/staticmethod/classmethod)

    python内置了property.staticmethod.classmethod三个装饰器,有时候我们也会用到,这里简单说明下 1.property 作用:顾名思义把函数装饰成属性 一般我们调用类 ...

  2. shell中mail发邮件的问题

    今天为了监控一下脚本,按照网上说的利用mail 发邮件,mail -s "error预警2" peien@1221.qq.com<'邮件内容',发现出现cc,不知道啥问题,也 ...

  3. GC频繁抖动的主要原因

    内存抖动 内存抖动是因为大量的对象被创建又在短时间内马上被释放,如循环中分配对象,很容易引起GC,特别是在较大的循环次数或者一个循环中分配较多的临时对象时. 瞬间产生大量的对象 瞬间产生大量的对象,即 ...

  4. resin4.0.25 安装配置 及结合eclipse开发

    resin4.0.25 安装配置 及结合eclipse开发 本文大部分内容是对官网的翻译,及自己配置后的一些体会. 一.  基于win  ,resin基本安装1,安装jdk1.6或更高版本2,配置环境 ...

  5. visual studio code 在 mac 下按 F12无效

    vsc 默认通过 F12可以查看定义(Go to Definition),可以查看类或方法的定义: 但是在 mac 环境下,有时按 F12并不生效,但是菜单栏的 Go 选项是被启动的,此时需要进行 2 ...

  6. input type=file实现图片上传,预览以及图片删除

    背景 前两天在做一个PC网站的意见反馈,其中涉及到了图片上传功能,要求可以上传多张图片,并且支持图片上传预览及图片删除, 图片上传这一块以前没怎么搞过,而且一般也很少会碰到这样的需求,所以在做这个功能 ...

  7. spring cloud config服务器

    Spring Cloud Config提供了一种在分布式系统中外部化配置服务器和客户端的支持.配置服务器有一个中心位置,管理所有环境下的应用的外部属性.客户端和服务器映射到相同Spring Event ...

  8. c# 导出表格

    var record = m_editor.getMasterRecord(); var Check_Id = record.Check_Id; var url = "/Storage/St ...

  9. try、catch、finally详解,你不知道的异常处理

    介绍 不管是新手还是工作几年的老油条,对try{}catch{}来说是不陌生的.他可以来帮助我们获取异常信息,在try中的代码出现错误,火灾catch代码块中被捕获到.官方也给了详细的解释:. 抛出异 ...

  10. [PHP] 算法-镜像二叉树的PHP实现

    操作给定的二叉树,将其变换为源二叉树的镜像. 二叉树的镜像定义:源二叉树 8 / \ 6 10 / \ / \ 5 7 9 11 镜像二叉树 8 / \ 10 6 / \ / \ 11 9 7 5 思 ...