某个招聘网站的验证码识别,过程如下

一: 原始验证码:

二: 首先对验证码进行分析,该验证码的数字颜色有变化,这个就是识别这个验证码遇到的比较难的问题,解决方法是使用PIL 中的  getpixel   方法进行变色处理,统一把非黑色的像素点变成黑色

  

                              变色后的图片

三: 通过观察,发现该验证码有折线,需要对图片进行降噪处理。

  

                                            降噪后的图片

四:识别:

  这里只是简单的使用   pytesseract 模块进行识别

  识别结果如下:

        

    总共十一个验证码,识别出来了9个,综合识别率是百分之八十。

总结:验证码识别只是简单调用了一下Python的第三方库,本验证码的识别难点如果给带颜色的数字变色。

下面是代码:

二值化变色:

  

#-*-coding:utf-8-*-
from PIL import Image def test(path):
img=Image.open(path)
w,h=img.size
for x in range(w):
for y in range(h):
r,g,b=img.getpixel((x,y))
if 190<=r<=255 and 170<=g<=255 and 0<=b<=140:
img.putpixel((x,y),(0,0,0))
if 0<=r<=90 and 210<=g<=255 and 0<=b<=90:
img.putpixel((x,y),(0,0,0))
img=img.convert('L').point([0]*150+[1]*(256-150),'')
return img for i in range(1,13):
path = str(i) + '.jpg'
im = test(path)
path = path.replace('jpg','png')
im.save(path)

二:降噪

  

#-*-coding:utf-8-*-

# coding:utf-8
import sys, os
from PIL import Image, ImageDraw # 二值数组
t2val = {} def twoValue(image, G):
for y in xrange(0, image.size[1]):
for x in xrange(0, image.size[0]):
g = image.getpixel((x, y))
if g > G:
t2val[(x, y)] = 1
else:
t2val[(x, y)] = 0 # 根据一个点A的RGB值,与周围的8个点的RBG值比较,设定一个值N(0 <N <8),当A的RGB值与周围8个点的RGB相等数小于N时,此点为噪点
# G: Integer 图像二值化阀值
# N: Integer 降噪率 0 <N <8
# Z: Integer 降噪次数
# 输出
# 0:降噪成功
# 1:降噪失败
def clearNoise(image, N, Z):
for i in xrange(0, Z):
t2val[(0, 0)] = 1
t2val[(image.size[0] - 1, image.size[1] - 1)] = 1 for x in xrange(1, image.size[0] - 1):
for y in xrange(1, image.size[1] - 1):
nearDots = 0
L = t2val[(x, y)]
if L == t2val[(x - 1, y - 1)]:
nearDots += 1
if L == t2val[(x - 1, y)]:
nearDots += 1
if L == t2val[(x - 1, y + 1)]:
nearDots += 1
if L == t2val[(x, y - 1)]:
nearDots += 1
if L == t2val[(x, y + 1)]:
nearDots += 1
if L == t2val[(x + 1, y - 1)]:
nearDots += 1
if L == t2val[(x + 1, y)]:
nearDots += 1
if L == t2val[(x + 1, y + 1)]:
nearDots += 1 if nearDots < N:
t2val[(x, y)] = 1 def saveImage(filename, size):
image = Image.new("", size)
draw = ImageDraw.Draw(image) for x in xrange(0, size[0]):
for y in xrange(0, size[1]):
draw.point((x, y), t2val[(x, y)]) image.save(filename)
for i in range(1,12):
path = str(i) + ".png"
image = Image.open(path).convert("L")
twoValue(image, 100)
clearNoise(image, 3, 2)
path1 = str(i) + ".jpeg"
saveImage(path1, image.size)

三:识别

  

#-*-coding:utf-8-*-

from PIL import Image
import pytesseract def recognize_captcha(img_path):
im = Image.open(img_path)
# threshold = 140
# table = []
# for i in range(256):
# if i < threshold:
# table.append(0)
# else:
# table.append(1)
#
# out = im.point(table, '1')
num = pytesseract.image_to_string(im)
return num if __name__ == '__main__':
for i in range(1, 12):
img_path = str(i) + ".jpeg"
res = recognize_captcha(img_path)
strs = res.split("\n")
if len(strs) >=1:
print (strs[0])

python 验证码识别示例(一) 某个网站验证码识别的更多相关文章

  1. Python识别网站验证码

    http://drops.wooyun.org/tips/6313 Python识别网站验证码 Manning · 2015/05/28 10:57 0x00 识别涉及技术 验证码识别涉及很多方面的内 ...

  2. python 验证码识别示例(二) 复杂验证码识别

     在这篇博文中手把手教你如何去分割验证,然后进行识别. 一:下载验证码 验证码分析,图片上有折线,验证码有数字,有英文字母大小写,分类的时候需要更多的样本,验证码的字母是彩色的,图片上有雪花等噪点,因 ...

  3. Python网络爬虫之cookie处理、验证码识别、代理ip、基于线程池的数据爬去

    本文概要 session处理cookie proxies参数设置请求代理ip 基于线程池的数据爬取 引入 有些时候,我们在使用爬虫程序去爬取一些用户相关信息的数据(爬取张三“人人网”个人主页数据)时, ...

  4. python验证码识别(2)极验滑动验证码识别

    目录 一:极验滑动验证码简介 二:极验滑动验证码识别思路 三:极验验证码识别 一:极验滑动验证码简介   近些年来出现了一些新型验证码,不想旧的验证码对人类不友好,但是这种验证码对于代码来说识别难度上 ...

  5. python实现对简单的运算型验证码的识别【不使用OpenCV】

    最近在写我们学校的教务系统的手机版,在前端用户执行绑定操作后,服务器将执行登录,但在登录过程中,教务系统中有个运算型的验证码,大致是这个样子的: 下面我们开始实现这个验证码的识别. 1.图片读取 从网 ...

  6. Keras入门(四)之利用CNN模型轻松破解网站验证码

    项目简介   在之前的文章keras入门(三)搭建CNN模型破解网站验证码中,笔者介绍介绍了如何用Keras来搭建CNN模型来破解网站的验证码,其中验证码含有字母和数字.   让我们一起回顾一下那篇文 ...

  7. keras入门(三)搭建CNN模型破解网站验证码

    项目介绍   在文章CNN大战验证码中,我们利用TensorFlow搭建了简单的CNN模型来破解某个网站的验证码.验证码如下: 在本文中,我们将会用Keras来搭建一个稍微复杂的CNN模型来破解以上的 ...

  8. 爬虫(十二):图形验证码的识别、滑动验证码的识别(B站滑动验证码)

    1. 验证码识别 随着爬虫的发展,越来越多的网站开始采用各种各样的措施来反爬虫,其中一个措施便是使用验证码.随着技术的发展,验证码也越来越花里胡哨的了.最开始就是几个数字随机组成的图像验证码,后来加入 ...

  9. 验证码识别之w3cschool字符图片验证码(easy级别)

    起因: 最近在练习解析验证码,看到了这个网站的验证码比较简单,于是就拿来解析一下攒攒经验值,并无任何冒犯之意... 验证码所在网页: https://www.w3cschool.cn/checkmph ...

  10. 使用tesseract-ocr破解网站验证码

    首先我得承认,关注tesseract-ocr, 是冲着下面这篇文章的噱头去的,26行groovy代码破解网站验证码 http://www.kellyrob99.com/blog/2010/03/14/ ...

随机推荐

  1. js异步梳理:1.从浏览器的多进程到JS的单线程,理解JS运行机制

    大家很早就知道JS是一门单线程的语言.但是也时不时的会看到进程这个词.首先简单区分下线程和进程的概念 1. 简单理解进程 - 进程是一个工厂,工厂有它的独立资源 - 工厂之间相互独立 - 线程是工厂中 ...

  2. Django 学习第十天——状态保持及表单

    状态保持: 1.http协议是无状态的:每次请求都是一次新的请求,不会记得之前通信的状态 2.客户端与服务器端的一次通信,就是一次会话实现状态保持的方式:在客户端或服务器端存储与会话有关的数据 3.存 ...

  3. 在Adobe Html5 Extension的使用Nodejs的问题

    前情回顾 之前为一个客户开发过一个基于Adobe Premiere的Html5扩展.原本是在Adobe Premiere Pro 2015下面进行调试开发的.一切进展的非常顺利,功能也都正常.但是20 ...

  4. 146. 大小写转换 II

    146. Lowercase to Uppercase II Description Implement an upper method to convert all characters in a ...

  5. iis和tomcat同时运行,完美解决80端口冲突问题

    背景:一台vps服务器上需要同时运行两个网站,节(老)省(板)成(扣)本,用一个服务器.一个是已经建好的官网(iis管理一键安装的PHP网站),另一个是java 项目网站(jeecg框架修改的商城项目 ...

  6. BZOJ.5338.[TJOI2018]xor(可持久化Trie)

    BZOJ LOJ 洛谷 惊了,18年了还有省选出模板题吗= = 做这题就是练模板的,我就知道我忘的差不多了 询问一就用以DFS序为前缀得到的可持久化Trie做,询问二很经典的树上差分. 注意求询问二的 ...

  7. 流畅的Python读书笔记(二)

    2.1 可变序列与不可变序列 可变序列 list. bytearray. array.array. collections.deque 和 memoryview. 不可变序列 tuple. str 和 ...

  8. [ZJOI2012]波浪

    Description: L = | P2 – P1 | + | P3 – P2 | + - + | PN – PN-1 | 给你一个N和M,问:随机一个1-N的排列,它的波动强度(L)不小于M的概率 ...

  9. 打开沙盒文件iOS

    有时使用数据库是需要查看或者更换沙盒里的数据库等文件 那么如何拿到真机的沙盒 查看真机沙盒教程 打开Devices 在xcode的上部导航栏里,选择window -> Devices and S ...

  10. tableviewcell选中不变色。

    tableview 选中一行后,不显示选中颜色 添加这样一句话就好 cell.selectionStyle = UITableViewCellSelectionStyleNone; 一定不要table ...