待补充……

AP算法,即Affinity propagation,是Brendan J. Frey* 和Delbert Dueck于2007年在science上提出的一种算法(文章链接,维基百科)

现在只是初步研究了一下官网上提供的MATLAB源码:apcluster.m

%APCLUSTER Affinity Propagation Clustering (Frey/Dueck, Science 2007)
% [idx,netsim,dpsim,expref]=APCLUSTER(s,p) clusters data, using a set
% of real-valued pairwise data point similarities as input. Clusters
% are each represented by a cluster center data point (the "exemplar").
% The method is iterative and searches for clusters so as to maximize
% an objective function, called net similarity.
%
% For N data points, there are potentially N^2-N pairwise similarities;
% this can be input as an N-by-N matrix 's', where s(i,k) is the
% similarity of point i to point k (s(i,k) needn抰 equal s(k,i)). In
% fact, only a smaller number of relevant similarities are needed; if
% only M similarity values are known (M < N^2-N) they can be input as
% an M-by-3 matrix with each row being an (i,j,s(i,j)) triple.
%
% APCLUSTER automatically determines the number of clusters based on
% the input preference 'p', a real-valued N-vector. p(i) indicates the
% preference that data point i be chosen as an exemplar. Often a good
% choice is to set all preferences to median(s); the number of clusters
% identified can be adjusted by changing this value accordingly. If 'p'
% is a scalar, APCLUSTER assumes all preferences are that shared value.
%
% The clustering solution is returned in idx. idx(j) is the index of
% the exemplar for data point j; idx(j)==j indicates data point j
% is itself an exemplar. The sum of the similarities of the data points to
% their exemplars is returned as dpsim, the sum of the preferences of
% the identified exemplars is returned in expref and the net similarity
% objective function returned is their sum, i.e. netsim=dpsim+expref.
%
% [ ... ]=apcluster(s,p,'NAME',VALUE,...) allows you to specify
% optional parameter name/value pairs as follows:
%
% 'maxits' maximum number of iterations (default: 1000)
% 'convits' if the estimated exemplars stay fixed for convits
% iterations, APCLUSTER terminates early (default: 100)
% 'dampfact' update equation damping level in [0.5, 1). Higher
% values correspond to heavy damping, which may be needed
% if oscillations occur. (default: 0.9)
% 'plot' (no value needed) Plots netsim after each iteration
% 'details' (no value needed) Outputs iteration-by-iteration
% details (greater memory requirements)
% 'nonoise' (no value needed) APCLUSTER adds a small amount of
% noise to 's' to prevent degenerate cases; this disables that.
%
% Copyright (c) B.J. Frey & D. Dueck (2006). This software may be
% freely used and distributed for non-commercial purposes.
% (RUN APCLUSTER WITHOUT ARGUMENTS FOR DEMO CODE)
function [idx,netsim,dpsim,expref]=apcluster(s,p,varargin);
if nargin==0, % display demo
fprintf('Affinity Propagation (APCLUSTER) sample/demo code\n\n');
fprintf('N=100; x=rand(N,2); % Create N, 2-D data points\n');
fprintf('M=N*N-N; s=zeros(M,3); % Make ALL N^2-N similarities\n');
fprintf('j=1;\n');
fprintf('for i=1:N\n');
fprintf(' for k=[1:i-1,i+1:N]\n');
fprintf(' s(j,1)=i; s(j,2)=k; s(j,3)=-sum((x(i,:)-x(k,:)).^2);\n');
fprintf(' j=j+1;\n');
fprintf(' end;\n');
fprintf('end;\n');
fprintf('p=median(s(:,3)); % Set preference to median similarity\n');
fprintf('[idx,netsim,dpsim,expref]=apcluster(s,p,''plot'');\n');
fprintf('fprintf(''Number of clusters: %%d\\n'',length(unique(idx)));\n');
fprintf('fprintf(''Fitness (net similarity): %%g\\n'',netsim);\n');
fprintf('figure; % Make a figures showing the data and the clusters\n');
fprintf('for i=unique(idx)''\n');
fprintf(' ii=find(idx==i); h=plot(x(ii,1),x(ii,2),''o''); hold on;\n');
fprintf(' col=rand(1,3); set(h,''Color'',col,''MarkerFaceColor'',col);\n');
fprintf(' xi1=x(i,1)*ones(size(ii)); xi2=x(i,2)*ones(size(ii)); \n');
fprintf(' line([x(ii,1),xi1]'',[x(ii,2),xi2]'',''Color'',col);\n');
fprintf('end;\n');
fprintf('axis equal tight;\n\n');
return;
end;
start = clock;
% Handle arguments to function
if nargin<2 error('Too few input arguments');
else
maxits=1000; convits=100; lam=0.9; plt=0; details=0; nonoise=0;
i=1;
while i<=length(varargin)
if strcmp(varargin{i},'plot')
plt=1; i=i+1;
elseif strcmp(varargin{i},'details')
details=1; i=i+1;
elseif strcmp(varargin{i},'sparse')
% [idx,netsim,dpsim,expref]=apcluster_sparse(s,p,varargin{:});
fprintf('''sparse'' argument no longer supported; see website for additional software\n\n');
return;
elseif strcmp(varargin{i},'nonoise')
nonoise=1; i=i+1;
elseif strcmp(varargin{i},'maxits')
maxits=varargin{i+1};
i=i+2;
if maxits<=0 error('maxits must be a positive integer'); end;
elseif strcmp(varargin{i},'convits')
convits=varargin{i+1};
i=i+2;
if convits<=0 error('convits must be a positive integer'); end;
elseif strcmp(varargin{i},'dampfact')
lam=varargin{i+1};
i=i+2;
if (lam<0.5)||(lam>=1)
error('dampfact must be >= 0.5 and < 1');
end;
else i=i+1;
end;
end;
end;
if lam>0.9
fprintf('\n*** Warning: Large damping factor in use. Turn on plotting\n');
fprintf(' to monitor the net similarity. The algorithm will\n');
fprintf(' change decisions slowly, so consider using a larger value\n');
fprintf(' of convits.\n\n');
end; % Check that standard arguments are consistent in size
if length(size(s))~=2 error('s should be a 2D matrix');
elseif length(size(p))>2 error('p should be a vector or a scalar');
elseif size(s,2)==3
tmp=max(max(s(:,1)),max(s(:,2)));
if length(p)==1 N=tmp; else N=length(p); end;
if tmp>N
error('data point index exceeds number of data points');
elseif min(min(s(:,1)),min(s(:,2)))<=0
error('data point indices must be >= 1');
end;
elseif size(s,1)==size(s,2)
N=size(s,1);
if (length(p)~=N)&&(length(p)~=1)
error('p should be scalar or a vector of size N');
end;
else error('s must have 3 columns or be square'); end; % Construct similarity matrix
if N>3000
fprintf('\n*** Warning: Large memory request. Consider activating\n');
fprintf(' the sparse version of APCLUSTER.\n\n');
end;
if size(s,2)==3 && size(s,1)~=3,
S=-Inf*ones(N,N,class(s));
for j=1:size(s,1), S(s(j,1),s(j,2))=s(j,3); end;
else S=s;
end; if S==S', symmetric=true; else symmetric=false; end;
realmin_=realmin(class(s)); realmax_=realmax(class(s)); % In case user did not remove degeneracies from the input similarities,
% avoid degenerate solutions by adding a small amount of noise to the
% input similarities
if ~nonoise
rns=randn('state'); randn('state',0);
S=S+(eps*S+realmin_*100).*rand(N,N);
randn('state',rns);
end; % Place preferences on the diagonal of S
if length(p)==1 for i=1:N S(i,i)=p; end;
else for i=1:N S(i,i)=p(i); end;
end; % Numerical stability -- replace -INF with -realmax
n=find(S<-realmax_); if ~isempty(n), warning('-INF similarities detected; changing to -REALMAX to ensure numerical stability'); S(n)=-realmax_; end; clear('n');
if ~isempty(find(S>realmax_,1)), error('+INF similarities detected; change to a large positive value (but smaller than +REALMAX)'); end; % Allocate space for messages, etc
dS=diag(S); A=zeros(N,N,class(s)); R=zeros(N,N,class(s)); t=1;
if plt, netsim=zeros(1,maxits+1); end;
if details
idx=zeros(N,maxits+1);
netsim=zeros(1,maxits+1);
dpsim=zeros(1,maxits+1);
expref=zeros(1,maxits+1);
end; % Execute parallel affinity propagation updates
e=zeros(N,convits); dn=0; i=0;
if symmetric, ST=S; else ST=S'; end; % saves memory if it's symmetric
while ~dn
i=i+1; % Compute responsibilities
A=A'; R=R';
for ii=1:N,
old = R(:,ii);
AS = A(:,ii) + ST(:,ii); [Y,I]=max(AS); AS(I)=-Inf;
[Y2,I2]=max(AS);
R(:,ii)=ST(:,ii)-Y;
R(I,ii)=ST(I,ii)-Y2;
R(:,ii)=(1-lam)*R(:,ii)+lam*old; % Damping
R(R(:,ii)>realmax_,ii)=realmax_;
end;
A=A'; R=R'; % Compute availabilities
for jj=1:N,
old = A(:,jj);
Rp = max(R(:,jj),0); Rp(jj)=R(jj,jj);
A(:,jj) = sum(Rp)-Rp;
dA = A(jj,jj); A(:,jj) = min(A(:,jj),0); A(jj,jj) = dA;
A(:,jj) = (1-lam)*A(:,jj) + lam*old; % Damping
end; % Check for convergence
E=((diag(A)+diag(R))>0); e(:,mod(i-1,convits)+1)=E; K=sum(E);
if i>=convits || i>=maxits,
se=sum(e,2);
unconverged=(sum((se==convits)+(se==0))~=N);
if (~unconverged&&(K>0))||(i==maxits) dn=1; end;
end; % Handle plotting and storage of details, if requested
if plt||details
if K==0
tmpnetsim=nan; tmpdpsim=nan; tmpexpref=nan; tmpidx=nan;
else
I=find(E); notI=find(~E); [tmp c]=max(S(:,I),[],2); c(I)=1:K; tmpidx=I(c);
tmpdpsim=sum(S(sub2ind([N N],notI,tmpidx(notI))));
tmpexpref=sum(dS(I));
tmpnetsim=tmpdpsim+tmpexpref;
end;
end;
if details
netsim(i)=tmpnetsim; dpsim(i)=tmpdpsim; expref(i)=tmpexpref;
idx(:,i)=tmpidx;
end;
if plt,
netsim(i)=tmpnetsim;
figure(234);
plot(((netsim(1:i)/10)*100)/10,'r-'); xlim([0 i]); % plot barely-finite stuff as infinite
xlabel('# Iterations');
ylabel('Fitness (net similarity) of quantized intermediate solution');
% drawnow;
end;
end; % iterations
I=find((diag(A)+diag(R))>0); K=length(I); % Identify exemplars
if K>0
[tmp c]=max(S(:,I),[],2); c(I)=1:K; % Identify clusters
% Refine the final set of exemplars and clusters and return results
for k=1:K ii=find(c==k); [y j]=max(sum(S(ii,ii),1)); I(k)=ii(j(1)); end; notI=reshape(setdiff(1:N,I),[],1);
[tmp c]=max(S(:,I),[],2); c(I)=1:K; tmpidx=I(c);
tmpdpsim=sum(S(sub2ind([N N],notI,tmpidx(notI))));
tmpexpref=sum(dS(I));
tmpnetsim=tmpdpsim+tmpexpref;
else
tmpidx=nan*ones(N,1); tmpnetsim=nan; tmpexpref=nan;
end;
if details
netsim(i+1)=tmpnetsim; netsim=netsim(1:i+1);
dpsim(i+1)=tmpdpsim; dpsim=dpsim(1:i+1);
expref(i+1)=tmpexpref; expref=expref(1:i+1);
idx(:,i+1)=tmpidx; idx=idx(:,1:i+1);
else
netsim=tmpnetsim; dpsim=tmpdpsim; expref=tmpexpref; idx=tmpidx;
end;
if plt||details
fprintf('\nNumber of exemplars identified: %d (for %d data points)\n',K,N);
fprintf('Net similarity: %g\n',tmpnetsim);
fprintf(' Similarities of data points to exemplars: %g\n',dpsim(end));
fprintf(' Preferences of selected exemplars: %g\n',tmpexpref);
fprintf('Number of iterations: %d\n\n',i);
fprintf('Elapsed time: %g sec\n',etime(clock,start));
end;
if unconverged
fprintf('\n*** Warning: Algorithm did not converge. Activate plotting\n');
fprintf(' so that you can monitor the net similarity. Consider\n');
fprintf(' increasing maxits and convits, and, if oscillations occur\n');
fprintf(' also increasing dampfact.\n\n');
end;

实际使用的示例数据:

s矩阵以及p的取值,

s=[1 0.85 0.9 0.5 0.45 0.5 0.4 0.4 0.5 0.45;
0.85 1 0.85 0.6 0.65 0.7 0.6 0.55 0.8 0.7;
0.9 0.85 1 0.75 0.7 0.65 0.55 0.5 0.6 0.5;
0.5 0.6 0.75 1 0.9 0.7 0.7 0.85 0.5 0.45;
0.45 0.65 0.7 0.9 1 0.9 0.9 0.85 0.6 0.65;
0.5 0.7 0.65 0.7 0.9 1 0.85 0.75 0.75 0.75;
0.4 0.6 0.55 0.7 0.9 0.85 1 0.85 0.5 0.55;
0.4 0.55 0.5 0.85 0.85 0.75 0.85 1 0.3 0.25;
0.5 0.8 0.6 0.5 0.6 0.75 0.5 0.3 1 0.9;
0.45 0.7 0.5 0.45 0.65 0.75 0.55 0.25 0.9 1;
];
p=median(median(s));

最后的运行结果:

idx =

     1
1
1
5
5
5
5
5
9
9 netsim = 8.1875 dpsim = 6.2000 expref = 1.9875

AP(affinity propagation)研究的更多相关文章

  1. Affinity Propagation Demo1学习

    利用AP算法进行聚类: 首先导入需要的包: from sklearn.cluster import AffinityPropagation from sklearn import metrics fr ...

  2. Affinity Propagation Algorithm

    The principle of Affinity Propagation Algorithm is discribed at above. It is widly applied in many f ...

  3. Affinity Propagation Demo2学习【可视化股票市场结构】

    这个例子利用几个无监督的技术从历史报价的变动中提取股票市场结构. 使用报价的日变化数据进行试验. Learning a graph structure 首先使用sparse inverse(相反) c ...

  4. AP聚类算法(Affinity propagation Clustering Algorithm )

    AP聚类算法是基于数据点间的"信息传递"的一种聚类算法.与k-均值算法或k中心点算法不同,AP算法不需要在运行算法之前确定聚类的个数.AP算法寻找的"examplars& ...

  5. 伪AP检测技术研究

    转载自:http://www.whitecell-club.org/?p=310 随着城市无线局域网热点在公共场所大规模的部署,无线局域网安全变得尤为突出和重要,其中伪AP钓鱼攻击是无线网络中严重的安 ...

  6. Affinity Propagation

    1. 调用方法: AffinityPropagation(damping=0.5, max_iter=200, convergence_iter=15, copy=True, preference=N ...

  7. knn/kmeans/kmeans++/Mini Batch K-means/Affinity Propagation/Mean Shift/层次聚类/DBSCAN 区别

    可以看出来除了KNN以外其他算法都是聚类算法 1.knn/kmeans/kmeans++区别 先给大家贴个简洁明了的图,好几个地方都看到过,我也不知道到底谁是原作者啦,如果侵权麻烦联系我咯~~~~ k ...

  8. AP聚类

    基于代表点的聚类算法可以说是聚类算法中"最经典的,最流行的,也是最前沿的". "最经典"是因为K均值是最早出现的聚类算法之一; "最流行"是 ...

  9. 机器学习:Python实现聚类算法(一)之AP算法

    1.算法简介 AP(Affinity Propagation)通常被翻译为近邻传播算法或者亲和力传播算法,是在2007年的Science杂志上提出的一种新的聚类算法.AP算法的基本思想是将全部数据点都 ...

随机推荐

  1. mysql在linux下的安装

    安装环境:系统是 centos6.5 1.下载 下载地址:http://dev.mysql.com/downloads/mysql/5.6.html#downloads 下载版本:我这里选择的5.6. ...

  2. Git安装与配置

    一.简介 Git是一款免费.开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目版本管理. Git 是 Linus Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放源码的 ...

  3. [django]Django的css、image和js静态文件生产环境配置

    前言:在Django中HTML文件如果采用外联的方式引入css,js文件或者image图片,一般采用<link rel="stylesheet" href="../ ...

  4. Makefile 编写 tips

    1.变量赋值 VARIABLE = value #在执行时扩展,允许递归扩展 VARIABLE := value #在定义时扩展 VARIABLE ?= value #只有在该变量为空时才设置该值 V ...

  5. HDU 1848 Fibonacci again and again【SG函数】

    对于Nim博弈,任何奇异局势(a,b,c)都有a^b^c=0. 延伸: 任何奇异局势(a1, a2,… an)都满足 a1^a2^…^an=0 首先定义mex(minimal excludant)运算 ...

  6. Ajax与json

    Ajax Ajax简介 Ajax技术,从用户发送请求到获取响应,当用户界面在整个过程中不会受到干扰,而且我们可以在必要的时候只刷新页面的一小部分,而不用刷新整个页面,即"无刷新"技 ...

  7. SQL/LINQ/Lamda 写法[转发]

    SQL LINQ Lambda SELECT * FROM HumanResources.Employee from e in Employees select e Employees   .Sele ...

  8. jmeter(七)定时器

    知识来源有点复杂,其他测试工作者的博客,百度百科,搜集的电子文档,个人理解等等,限于水平和理解能力,可能有些内容有错误的地方... jmeter提供了很多元件,帮助我们更好的完成各种场景的性能测试,其 ...

  9. ThinkPHP常用配置路径

    //系统常量定义 //去THinkPHP手册中进行查找 echo "<br>"."网站的根目录地址".__ROOT__." "; ...

  10. BZOJ 1853 【Scoi2010】 幸运数字

    Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认 为,于是他定义自己的"幸运号码"是十进制表示中只包含数字6和8的那些号码,比如68,666,8 ...