简介: Pandas是一个十分强大的python数据分析工具,也是各种数据建模的标准工具。Pandas擅长处理数字型数据和时间序列数据。Pandas的第一大优势在于,封装了一些复杂的代码实现过程,只需要调用接口就行了,避免了编写大量的代码。Pandas的第二大优势在于灵活性,可以实现自动化批量化处理复杂的逻辑,这些工作是Excel等工具是无法完成的。因而Pandas介于Excel和自主编写程序之间,兼具灵活性和简洁性的数据分析工具。

Pandas是什么

Pandas是一个十分强大的python数据分析工具,也是各种数据建模的标准工具。Pandas擅长处理数字型数据和时间序列数据。Pandas的第一大优势在于,封装了一些复杂的代码实现过程,只需要调用接口就行了,避免了编写大量的代码。Pandas的第二大优势在于灵活性,可以实现自动化批量化处理复杂的逻辑,这些工作是Excel等工具是无法完成的。因而Pandas介于Excel和自主编写程序之间,兼具灵活性和简洁性的数据分析工具。

在输入上,Pandas支持读取多种格式的文件,包括csv、orc、xml、json,也支持读取分布式文件系统HDFS,此外还支持通过jdbc协议读取mysql或兼容mysql协议的数仓。输入的数据会转换成内存中的数据结构DataFrame,之后的数据分析就是围绕着DataFrame进行。

在输出上,pandas可以实现非常震撼的可视化效果,对接众多赏心悦目的可视化库,可以实现动态数据交互效果。

pandas毕竟是一种python脚本语言,性能上一般,只能处理少量数据,跟现代化的数仓的计算能力差别是比较大的。但是如此灵活的pandas分析,能否和数仓相结合,赋予数仓更灵活的数据分析能力,同时获得大规模数据的分析能力呢?

SQL语言的优势和缺点

SQL是目前使用最为广泛的数据分析语言,SQL自从1980年代在IBM研发出来之后,立即成为各种数据分析系统的标准语言。究其原因,SQL是一种声明式语法,用户只需要声明想要的结果,不必指定获取结果的过程。这种方式有两个好处,一方面,如何以最高性能最小代价获得计算结果,需要编写复杂的算法,乃至了解机器的硬件特性,这需要专门的数据库内核工程师才能做到;对于数据分析师而言,这个要求有点过于复杂。因而声明式语法,解放了数据分析师的工作量,降低了数据分析门槛,扩大了SQL的受众。另一方面,没有指定运行过程,则给了数据库内核工程师们更大的自由度去生成最佳的执行计划。这是SQL的优势。

SQL的理论基础来自于关系代数,任何一个操作的对象都是关系,任何操作的结果也是一个关系。关系+操作生成一个新的关系。任何时刻,用户都可以看到一个关系实体。这套极强的理论基础,可以让一个SQL语句无限扩展,在任意时刻都能获得一个关系,再附加一个操作,变成另外一个关系。

由于SQL是基于关系代数和关系模型,关系模型中的关系这个实体,我们可以把它想象成一个二维的表格包含多行多列,行数无限制,而列数则是有限制的。行数是动态的,可以是0行,也可以是无限行。列数则是静态的,不可变更的,不管有无数据,都是固定的列数输出。静态列的这种方法,也限制了SQL在一些场景的应用。两个典型的场景是矩阵转置或者生成透视表(交叉表)。这两种场景下,列的个数都是动态的。因而SQL需要部分借助于编程才能实现完整的数据分析。

SLS SQL的优势

SQL只是一个语法表现成,是用户和数仓系统交互的语言。而数仓的真正强大之处在于它的内核。SLS日志数仓,采用SQL为语法接口,借助于云原生的分布式架构,可以实现query级别的弹性分析能力,可以实现单次分析千亿条数据的能力。

Pandas具备分析灵活性,SLS具备强大的SQL分析能力。两者融合,既能享受SLS强大的SQL分析能力,又能借助Pandas的灵活的数据分析和分析库。那么两者怎么结合呢?

Pandas连接SLS 做融合分析

Pandas支持jdbc接口读取数据,SLS也支持jdbc协议。因而Pandas可以通过jdbc协议连接SLS。对于分析任务中的比较重的计算,通过SQL传递给SLS计算;对于比较灵活的分析、SQL完成不了的分析,则在Pandas上做二次分析和可视化。例如构建透视表或者交叉表:先通过SQ L完成两个维度的交叉计算,这个过程往往计算量比较大;再通过Pandas完成行列转换,展示成二维表。

一个例子:

import numpy as np

import pandas as pd

import pymysql

# sql 命令

slshost=""

username=""

password=""

dbname=""  # project is database

sql_cmd = "select method,status ,count(1) as pv from access_log group by method, status limit 1000"

con = pymysql.connect(host=slshost, port=10005,user=username, password=password, database=dbname, charset='utf8', use_unicode=True)

data = pd.read_sql(sql_cmd, con)

tab=pd.pivot_table(data,values="pv",index="status",columns="method" )

print(tab)

例子中的SQL,分析nginx访问日志,计算method和status两个维度的pv。再调用pandas的pivot_table函数构建透视表。

执行结果如下图:

本文为阿里云原创内容,未经允许不得转载。

Pandas+ SLS SQL:融合灵活性和高性能的数据透视的更多相关文章

  1. SQL pivot 基本用法 行列转换 数据透视

    SQL通过pivot进行行列转换 数据透视 可直接在sql server 运行 传统操作 和 pivot create table XKCl (name nchar(10) not null, 学科 ...

  2. pandas常用操作详解(复制别人的)——数据透视表操作:pivot_table()

    原文链接:https://www.cnblogs.com/Yanjy-OnlyOne/p/11195621.html 一文看懂pandas的透视表pivot_table 一.概述 1.1 什么是透视表 ...

  3. pandas 读写sql数据库

    如何从数据库中读取数据到DataFrame中? 使用pandas.io.sql模块中的sql.read_sql_query(sql_str,conn)和sql.read_sql_table(table ...

  4. 【Pandas vs SQL】数据分析代码逐行比对,孰优孰劣?

    在数据分析领域,pandas是python数据分析基础工具,SQL是数据库最常用分析语言.二者有相通的地方,也有很大的语法不同,做起数据分析来,谁将更胜一筹呢? 做过业务开发.跟数据库打交道比较多的小 ...

  5. 超轻量级高性能ORM数据访问组件Deft,比dapper快20%以上

    超轻量级高性能ORM数据访问组件Deft,比dapper快20%以上 阅读目录 Deft简介 Deft 核心类介绍 Deft 3分钟即可上手使用 其他可选的配置参数 性能测试 Demo代码下载 回到顶 ...

  6. CQengine高性能内存数据缓存查找框架

    CQengine可实现高性能内存数据缓存查找 CQEngine 需要设置字段对应的属性以方便访问与查询 主要有属性链接 SimpleAttribute(不能为空) SimpleNullableAttr ...

  7. 你真的会玩SQL吗?你所不知道的 数据聚合

    你真的会玩SQL吗?系列目录 你真的会玩SQL吗?之逻辑查询处理阶段 你真的会玩SQL吗?和平大使 内连接.外连接 你真的会玩SQL吗?三范式.数据完整性 你真的会玩SQL吗?查询指定节点及其所有父节 ...

  8. sql server 读取excel里的数据

    以下是执行的sql代码,只拿简单读取数据举例,其他详细的,请自行查看 reconfigure RECONFIGURE GO GO SELECT * FROM OPENROWSET('Microsoft ...

  9. 【转载】使用Pandas创建数据透视表

    使用Pandas创建数据透视表 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas创建数据透视表 目录 pandas.pivot_table() 创建简单的数据透视表 增加一个行维度(inde ...

  10. 清空SQL Server数据库中所有表数据的方法(转)

    清空SQL Server数据库中所有表数据的方法 其实删除数据库中数据的方法并不复杂,为什么我还要多此一举呢,一是我这里介绍的是删除数据库的所有数据,因为数据之间可能形成相互约束关系,删除操作可能陷入 ...

随机推荐

  1. python getOpenFileNames 获取文件实例解析

    一 概念 选取文件夹 QFileDialog.getExistingDirectory() 选择文件 QFileDialog.getOpenFileName() 选择多个文件 QFileDialog. ...

  2. Android JNI静态和动态注册 、Java Reflect(C或C++层反射和JAVA层反射)、Java 可变参数(JNI实现)

    PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(Bl ...

  3. 【atcoder abc276 】(a* 搜索)

    import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import ...

  4. 干货分享 | 3个Zbrush实用减面工具分享

    一.使用Sculptris Pro Sculptris Pro是zbrush中的一个功能按钮,点击此工具按钮,同时将笔刷转换至standard笔刷,即可减去需要平滑的面. 点击开启Sculptris ...

  5. 什么是XR扩展现实,XR云串流平台有哪些

    什么是云XR (AR/VR/MR/SR) 虚拟现实(VR),传统的实现方式是通过计算机模拟虚拟环境,从而给人一种环境沉浸感.与传统视频相比,VR带来了前所未有的沉浸式体验. 增强现实(AR)是一种无缝 ...

  6. 使用JMeter从JSON响应的URL参数中提取特定值

    在使用Apache JMeter进行API测试时,我们经常需要从JSON格式的响应中提取特定字段的值.这可以通过使用JMeter内置的JSON提取器和正则表达式提取器来完成.以下是一个具体的例子,展示 ...

  7. [HTML、CSS]细节、经验

    [版权声明]未经博主同意,谢绝转载!(请尊重原创,博主保留追究权) https://blog.csdn.net/m0_69908381/article/details/130134573 出自[进步* ...

  8. PSS:你距离NMS-free+提点只有两个卷积层 | 2021论文

      论文提出了简单高效的PSS分支,仅需在原网络的基础上添加两个卷积层就能去掉NMS后处理,还能提升模型的准确率,而stop-grad的训练方法也挺有意思的,值得一看 来源:晓飞的算法工程笔记 公众号 ...

  9. KingbaseES创建外键与Mysql的差异

    Mysql mysql> select version(); +-----------+ | version() | +-----------+ | 8.0.23 | +-----------+ ...

  10. KingbaseESV8R6中查看索引常用sql

    前言 KingbaseES具有丰富的索引功能,对于运行一段时间的数据库,经常需要查看索引的使用大小,使用状态等. 尤其重复索引的存在,有时会因为索引过多而造成维护成本加大和减慢数据库的运行速度. 下面 ...