一、简介

在上篇文章中,我们介绍到在多线程环境下,如果编程不当,可能会出现程序运行结果混乱的问题。

出现这个原因主要是,JMM 中主内存和线程工作内存的数据不一致,以及多个线程执行时无序,共同导致的结果。

同时也提到引入synchronized同步锁,可以保证线程同步,让多个线程依次排队执行被synchronized修饰的方法或者方法块,使程序的运行结果与预期一致。

不可否认,采用synchronized同步锁确实可以保证线程安全,但是它对服务性能的消耗也很大,synchronized是一个独占式的同步锁,比如当多个线程尝试获取锁时,其中一个线程获取到锁之后,未获取到锁的线程会不断的尝试获取锁,而不会发生中断,当冲突严重的时候,线程会直接进入阻塞状态,不能再干别的活。

为了实现线程之间更加方便的访问共享变量,Java 编程语言还提供了另一种同步机制:volatile域变量,在某些场景下使用它会更加方便。

一般来说,被volatile修饰的变量,可以保证所有线程看到这个变量都是同一个值,同时它不会引起线程上下文的切换和调度,相比synchronizedvolatile更加的轻量化。

比较官方的解释,volatile修饰变量有以下几个作用:

  • 1.保证变量的可见性,不保证原子性

    当用volatile修饰一个变量时,JMM 会把当前线程本地内存中的变量强制刷新到主内存中去,这个写操作也会导致其他线程中被volatile修饰的变量缓存无效,然后从主内存中获取最新的值

  • 2.禁止指令重排

    正常情况下,编译器和处理器为了优化程序执行性能会对指令序列进行重排序,当然是在不影响程序结果的前提下。volatile能够在一定程度上禁止 JVM 进行指令重排。

从概念上感觉比较难理解,下面我们结合几个例子,一起来看看它的具体应用。

二、volatile 使用详解

我们先看一个例子。

public class DataEntity {

    private boolean isRunning = true;

    public void addCount(){
System.out.println("线程运行开始....");
while (isRunning){ }
System.out.println("线程运行结束....");
} public boolean isRunning() {
return isRunning;
} public void setRunning(boolean running) {
isRunning = running;
}
}
public class MyThread extends Thread {

    private DataEntity entity;

    public MyThread(DataEntity entity) {
this.entity = entity;
} @Override
public void run() {
entity.addCount();
}
}
public class MyThreadTest {

    public static void main(String[] args) throws InterruptedException {
// 初始化数据实体
DataEntity entity = new DataEntity(); MyThread threadA = new MyThread(entity);
threadA.start(); // 主线程阻塞1秒
Thread.sleep(1000); // 将运行状态设置为false
entity.setRunning(false);
}
}

运行结果如下:

从实际运行结果来看,程序进入死循环状态,虽然最后一行手动设置了entity.setRunning(false),但是没有起到任何的作用。

原因其实也很简单,虽然主线程mainisRunning变量设置为false,但是线程threadA 里面的isRunning变量还是true,两个线程看到的数据不一致。

假如在isRunning变量上,加一个volatile关键字,我们再来看看运行效果。

/**
* 在 isRunning 变量上加一个 volatile 关键字
*/
private volatile boolean isRunning = true;

运行结果如下:

程序运行后自动结束。

说明当主线程mainisRunning变量设置为false时,线程threadA 里面的isRunning值也随着发生变化。

说明被volatile修饰的变量,在多线程环境下,可以保证所有线程看到这个变量都是同一个值。

三、volatile 不适用的场景

对于某些场景下,volatile可能并不适用,我们还是先看一个例子。

public class DataEntity {

    private volatile int count = 0;

    public void addCount(){
for (int i = 0; i < 100000; i++) {
count++;
}
} public int getCount() {
return count;
}
}
public class MyThreadTest {

    public static void main(String[] args) throws InterruptedException {
// 初始化数据实体
DataEntity entity = new DataEntity(); // 初始化5个线程计数器
CountDownLatch latch = new CountDownLatch(5); // 采用多线程进行操作
for (int i = 0; i < 5; i++) {
new Thread(new Runnable() {
@Override
public void run() {
entity.addCount();
//线程运行完毕减1
latch.countDown();
}
}).start();
} // 等待以上线程执行完毕,再获取结果
latch.await();
System.out.println("result: " + entity.getCount());
}
}

运行结果如下:

第一次运行:result: 340464
第二次运行:result: 318342
第三次运行:result: 305957

理论上使用 5 个线程分别执行了100000自增,我们预期的结果应该是5*100000=500000,从实际的运行结果可以看出,与预期不一致。

这是因为volatile的作用其实是有限的,它只能保证多个线程之间看到的共享变量值是最新的,但是无法保证多个线程操作共享变量时依次有序,无法保证原子性操作

上面的例子中count++不是一个原子性操作,在处理器看来,其实一共做了三个步骤的操作:读取数据对数据加 1回写数据,在多线程随机执行情况下,输出结果不能达到预期值。

如果想要实现与预期一致的结果,有以下三种方案可选。

方案一:采用synchronized同步锁

public class DataEntityC2 {

    private int count = 0;

    /**
* 采用 synchronized 同步锁,可以实现多个线程执行方法时串行
*/
public synchronized void addCount(){
for (int i = 0; i < 100000; i++) {
count++;
}
} public int getCount() {
return count;
}
}

方案二:采用Lock

public class DataEntityC2 {

    private int count = 0;

    private Lock lock = new ReentrantLock();

    /**
* 采用 Lock 锁,可以实现多个线程执行方法时串行
*/
public void addCount(){
for (int i = 0; i < 100000; i++) {
lock.lock();
try {
count++;
} finally {
lock.unlock();
}
}
} public int getCount() {
return count;
}
}

方案三:采用JUC包中的原子操作类

public class DataEntity {

    private AtomicInteger inc = new AtomicInteger();

    /**
* 采用原子操作类,原子操作类是通过CAS循环的方式来保证操作原子性
*/
public void addCount(){
for (int i = 0; i < 100000; i++) {
inc.getAndIncrement();
}
} public int getCount() {
return inc.get();
}
}

以上三种方案,都可以实现程序的运行结果与预期一致!

四、volatile 的原理

通过以上的例子介绍,相信大家对volatile关键字的作用有了一些认识。

volatile修饰的变量,可以保证变量在内存中的可见性,但是无法保证原子性操作。

关于原子性、可见性和有序性的定义,这三个特性主要从多线程编程安全角度总结出来的一些基本要素,也是并发编程的三大核心基础,在上篇文章中有所提到过,这里不再重复讲了。

在 JVM 底层,volatile是通过采用“内存屏障”来实现内存可见性和禁止指令重排。观察不加入volatile和加入volatile关键字所生成的汇编代码发现,加入volatile关键字的代码会多出一个lock前缀指令,lock前缀指令实际上相当于一个内存屏障,可以提供以下 3 个功能。

  • 1.它确保指令重排序时,不会把后面的指令排到内存屏障之前的位置,也不会把前面的指令排到内存屏障的后面,禁止处理器对影响程序执行结果的指令进行重排
  • 2.它会强制将缓存的修改操作立刻写入主存,保证内存变量可见
  • 3.如果是写操作,它会导致其它 CPU 中对应的行缓存无效,目的是让其他线程中被volatile修饰的变量缓存无效,然后从主内存中获取最新的值

五、单例模式中的双重检锁为什么要加 volatile?

在上篇文章中,我们提到过单例设计模式中的双重校验锁实现。

public class Singleton {  

    private volatile static Singleton singleton;  

    private Singleton (){}  

    public static Singleton getSingleton() {
if (singleton == null) { //第一行
synchronized (Singleton.class) { //第二行
if (singleton == null) { //第三行
singleton = new Singleton(); //第四行
}
}
}
return singleton; //第五行
}
}

synchronized可以保证原子性、可见性和有序性,为什么变量singleton还需要加volatile关键字呢?

之所以需要加volatile关键字的原因是:问题出在第一行代码不在同步代码块之类,可能出现这个对象地址不为空,但是内容为空

以初始化一个Singleton singleton = new Singleton();为例,JVM 会分三个步骤完成:

a. memory = allocate() //分配内存
b. ctorInstanc(memory) //初始化对象
c. instance = memory //设置instance指向刚分配的地址

上面的代码在编译运行时可能会出现重排序,因为bc无逻辑关联,执行的顺序是a -> b -> c或者a -> c -> b,在多线程的环境下可能会出现问题。

分析过程如下:

  • 1.线程 A 执行到第四行代码时,线程 B 进来执行第一行代码
  • 2.假设线程 A 在执行过程中发生了指令重排序,先执行了ac,没有执行b
  • 3.由于线程 A 执行了c导致instance指向了一段地址,此时线程 B 检查singleton发现不为null,会直接跳转到第五行代码,返回一个未初始化的对象,导致程序会出现报错
  • 4.因此需要在singleton变量上加一个volatile关键字,当线程 A 执行完毕b操作之后,会变量强制刷新到主内存中,此时线程 B 也可以拿到最新的对象

这就是为啥双重检锁模式中,singleton变量为啥要加一个volatile关键字的原因。

采用双重检锁的方式,可以显著的提升并发查询的效率。

六、小结

本篇文章主要围绕volatile关键字的用途、使用方式和一些坑点,做了一个简单的知识总结,内容难免有所遗漏,欢迎网友留言指出!

七、参考

1、老鼠只爱大米 - Java volatile关键字总结

多线程系列(四) -volatile关键字使用详解的更多相关文章

  1. volatile关键字的详解-并发编程的体现

    xl_echo编辑整理,欢迎转载,转载请声明文章来源.欢迎添加echo微信(微信号:t2421499075)交流学习. 百战不败,依不自称常胜,百败不颓,依能奋力前行.--这才是真正的堪称强大!! 参 ...

  2. SAP ECC6安装系列四:安装过程详解

    原作者博客 http://www.cnblogs.com/Michael_z/ ======================================== 续接上篇,我们终于按下了 “Next” ...

  3. Spring系列(四):Spring AOP详解和实现方式(xml配置和注解配置)

    参考文章:http://www.cnblogs.com/hongwz/p/5764917.html 一.什么是AOP AOP(Aspect Oriented Programming),即面向切面编程, ...

  4. Android Studio系列教程五--Gradle命令详解与导入第三方包

    Android Studio系列教程五--Gradle命令详解与导入第三方包 2015 年 01 月 05 日 DevTools 本文为个人原创,欢迎转载,但请务必在明显位置注明出处!http://s ...

  5. [js高手之路] es6系列教程 - 对象功能扩展详解

    第一:字面量对象的方法,支持缩写形式 //es6之前,这么写 var User = { name : 'ghostwu', showName : function(){ return this.nam ...

  6. 剑指Offer——线程同步volatile与synchronized详解

    (转)Java面试--线程同步volatile与synchronized详解 0. 前言 面试时很可能遇到这样一个问题:使用volatile修饰int型变量i,多个线程同时进行i++操作,这样可以实现 ...

  7. SpringBoot系列(十二)过滤器配置详解

    SpringBoot(十二)过滤器详解 往期精彩推荐 SpringBoot系列(一)idea新建Springboot项目 SpringBoot系列(二)入门知识 springBoot系列(三)配置文件 ...

  8. ava下static关键字用法详解

    Java下static关键字用法详解 本文章介绍了java下static关键字的用法,大部分内容摘自原作者,在此学习并分享给大家. Static关键字可以修饰什么? 从以下测试可以看出, static ...

  9. Java多线程编程中Future模式的详解

    Java多线程编程中,常用的多线程设计模式包括:Future模式.Master-Worker模式.Guarded Suspeionsion模式.不变模式和生产者-消费者模式等.这篇文章主要讲述Futu ...

  10. 构建安全的Xml Web Service系列之wse之错误代码详解

    原文:构建安全的Xml Web Service系列之wse之错误代码详解 WSE3.0现在还没有中文版的可以下载,使用英文版的过程中,难免会遇到各种各样的错误,而面对一堆毫无头绪的错误异常,常常会感到 ...

随机推荐

  1. STM32 芯片锁死解决方法

    芯片锁死原因: 1.烧进去的工程对应器件与目标器件不一致: 2.烧进去的工程HSE_VALUE与目标板上晶振频率不一致: 3.... 解决方法: 1.工程设置 2.按住复位按键,或短接复位脚电容,点击 ...

  2. PC 网页 布局图

  3. 【面试题精讲】说一说springboot加载配置文件优先级

    有的时候博客内容会有变动,首发博客是最新的,其他博客地址可能会未同步,认准https://blog.zysicyj.top 首发博客地址 文章更新计划 系列文章地址 Spring Boot 加载配置文 ...

  4. [转帖]TiDB 配置参数修改与系统变量修改步骤

    https://tidb.net/blog/bda86911   注意事项1:tidb-test 为集群名称   注意事项2:参数修改前与修改后备份.tiup目录   注意事项3:通过 tiup cl ...

  5. [转帖]多CPU && 多核CPU | 多进程 && 多线程 | 并行 && 并发

    https://cloud.tencent.com/developer/article/1886157?areaSource=&traceId=   文章目录 区分 多CPU &&am ...

  6. 使用rpm打包nacos然后部署为systemd服务开机自动启动的方法

    背景 Nacos是阿里开源的服务注册组件,能够简单的实现微服务的注册与发现机制. 但是官方并没有提供 sytemd的服务脚本, 也没有提供rpm包的方式. 公司里面使用 nacos的场景越来越多, 部 ...

  7. 《SAIS Supervising and Augmenting Intermediate Steps for Document-Level Relation Extraction》论文阅读笔记

    代码   原文地址   预备知识: 1.什么是标记索引(token indices)? 标记索引是一种用于表示文本中的单词或符号的数字编码.它们可以帮助计算机理解和处理自然语言.例如,假如有一个字典{ ...

  8. 【记录一个问题】VictoriaMetrics的vmstorage因为慢查询导致大量写入失败

    作者:张富春(ahfuzhang),转载时请注明作者和引用链接,谢谢! cnblogs博客 zhihu Github 公众号:一本正经的瞎扯 见上图. 一直以为vmstorage中的查询协程会让位于写 ...

  9. 2022美亚杯个人wp

    检材文件下载链接:https://pan.baidu.com/s/1kg8FMeMaj6BIBmuvUZHA3Q?pwd=ngzs 提取码:ngzs 个人赛与团队赛下载文件解压密码:MeiyaCup2 ...

  10. 解锁数据潜力:信息抽取、数据增强与UIE的完美融合

    解锁数据潜力:信息抽取.数据增强与UIE的完美融合 1.信息抽取(Information Extraction) 1.1 IE简介 信息抽取是 NLP 任务中非常常见的一种任务,其目的在于从一段自然文 ...