scipy.spatial子模块提供了一系列用于处理和计算空间数据和几何形状的算法和工具,在许多领域都有广泛的应用,例如计算机视觉、地理信息系统、机器人学、医学影像分析等。

下面,来具体看看scipy.spatial子模块为我们提供的主要功能分类。

1. 主要功能

scipy.spatial子模块中主要包含的功能有:

类别 说明
空间变换类 目前主要是三维旋转类的函数
最近邻查询类 提供了基于树结构的最近邻搜索算法,如K-d树、球树等,用于在大型空间数据集中快速找到最近邻对象
距离度量类 提供了计算点、线、面等几何形状之间的距离的函数,包括欧几里得距离、曼哈顿距离、切比雪夫距离等。
三角剖分、凸包类 提供了计算二维数据点的凸包的函数,即找到最小的凸多边形来包含所有数据点等
单纯形表示类 提供了三维几何对象的方法,如三维点、向量、矩阵

2. 使用示例

下面演示两个用scipy.spatial子模块中的函数实现的示例。

2.1. 凸包计算示例

给定任意个点,计算凸包就是计算包含给定点集中所有点的最小凸对象。

from scipy.spatial import ConvexHull
import numpy as np
import matplotlib.pyplot as plt # 随机生成100个点
points = np.random.rand(100, 2)
# 计算这些点的凸包
hull = ConvexHull(points) # 绘制一个随机点
plt.scatter(points[:, 0], points[:, 1], marker='o')
# 将位于凸包上的点用红色线连接起来
for simplex in hull.simplices:
plt.plot(points[simplex, 0], points[simplex, 1], 'r-') plt.show()

2.2. 三维旋转示例

使用scipy.spatial子模块来做三维旋转非常简单,它提了多种旋转三维物体的方法,
可以通过欧拉角轴角旋转向量四元组,以及旋转矩阵

使用方式类似,下面演示的是用欧拉角来旋转一个三维球体。
首先绘制一个球体:

import matplotlib.pyplot as plt
import numpy as np fig = plt.figure()
ax = fig.add_subplot(projection='3d') # 球面点的数据
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
x = 10 * np.outer(np.cos(u), np.sin(v))
y = 10 * np.outer(np.sin(u), np.sin(v))
z = 10 * np.outer(np.ones(np.size(u)), np.cos(v)) ax.plot_surface(x, y, z, cmap=plt.cm.rainbow) ax.set_aspect('equal')
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z") plt.show()

然后用 scipy.spatial 中的方法分别沿X轴旋转45度沿Y轴旋转90度

from scipy.spatial.transform import Rotation

# 沿着 "axis" 轴旋转 "degree" 角度
def rotate(axis, degree):
r = Rotation.from_euler(axis, degree, degrees=True)
v = np.dstack((x, y, z))
v = r.apply(v.reshape(-1, 3))
v = v.reshape((*z.shape, 3))
return v fig, ax = plt.subplots(1, 2, subplot_kw={"projection": "3d"}) v = rotate('x', 45)
ax[0].plot_surface(v[:, :, 0], v[:, :, 1], v[:, :, 2],
cmap=plt.cm.rainbow)
ax[0].set_aspect('equal')
ax[0].set_title("沿X轴旋转45度") v = rotate('y', 90)
ax[1].plot_surface(v[:, :, 0], v[:, :, 1], v[:, :, 2],
cmap=plt.cm.rainbow)
ax[1].set_aspect('equal')
ax[1].set_title("沿Y轴旋转90度") plt.show()

3. 总结

总之,scipy.spatial子模块的重点应用领域有:
距离计算问题,通过计算点、线、面等几何形状之间的距离,可以用于图像配准、碰撞检测、空间聚类等应用;
还有空间插值方法,可以将离散的空间数据转换为连续的函数,用于图像处理、数值分析等领域;
凸包算法,用于图像处理中的对象识别、区域提取等任务;
几何形状操作方法,可以对二维或三维的几何对象进行合并、相交、相减等操作,用于计算机图形学、机器人路径规划等应用;
最近邻搜索算法,在大型空间数据集中快速找到最近邻对象,用于推荐系统、空间索引等应用;

此外,该子模块还提供了排列组合、阶乘和伽马函数等数学计算操作。

【scipy 基础】--空间计算的更多相关文章

  1. Java基础-时间复杂度计算方式

    Java基础-时间复杂度计算方式 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.   时间复杂度通常是衡量算法的优劣的,衡量算法的时间严格来讲是很难衡量的,由于不同的机器性能不用环境 ...

  2. (数据科学学习手札84)基于geopandas的空间数据分析——空间计算篇(上)

    本文示例代码.数据及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在本系列之前的文章中我们主要讨论了g ...

  3. (数据科学学习手札88)基于geopandas的空间数据分析——空间计算篇(下)

    本文示例代码及数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在基于geopandas的空间数据分析系列 ...

  4. SQL Server 2008空间数据应用系列四:基础空间对象与函数应用

    原文:SQL Server 2008空间数据应用系列四:基础空间对象与函数应用 友情提示,您阅读本篇博文的先决条件如下: 1.本文示例基于Microsoft SQL Server 2008 R2调测. ...

  5. Linux 64位下一键安装scipy等科学计算环境

    Linux 64位下一键安装scipy等科学计算环境 采用scipy.org的各种方法试过了,安装还是失败.找到了一键式安装包Anaconda,基本python要用到的库都齐了,而且还可以选择安装到其 ...

  6. SciPy 基础功能

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  7. Scipy教程 - 距离计算库scipy.spatial.distance

    http://blog.csdn.net/pipisorry/article/details/48814183 在scipy.spatial中最重要的模块应该就是距离计算模块distance了. fr ...

  8. Windows下安装python的scipy等科学计算包(转)

    如果要使用python进行科学计算.数据分析等,一定要安装scipy.seaborn.numpy等等包. 但Windows下安装python的第三方库经常会出现问题.此前,已介绍过Windows下如何 ...

  9. sql 基础练习 计算7天各个时间点的总和 group by order mysql一次查询多个表

    SQL 基础练习 -- 创建数据库 CREATE DATABASE school CHARACTER SET UTF8; -- 使用数据库 USE school; -- id: 学生的id -- na ...

  10. 03 . Vue基础之计算属性,组件基础定义和使用

    vue组件 fetch请求组件 fetch XMLHttpRequest是一个设计粗糙的API, 配置和调用方式非常混乱,而且基于事件的异步模型写起来不友好,兼容性不好. <!DOCTYPE h ...

随机推荐

  1. 十 Appium环境搭建(Windows版)

    注:appium安装到C盘,node.js安装到C盘 一.安装node.js 1.到官网下载node.js:https://nodejs.org/en/download/ 2.获取到安装文件后,直接双 ...

  2. nlp入门(三)基于贝叶斯算法的拼写错误检测器

    源码请到:自然语言处理练习: 学习自然语言处理时候写的一些代码 (gitee.com) 数据来源:norvig.com/big.txt 贝叶斯原理可看这里:机器学习算法学习笔记 - 过客匆匆,沉沉浮浮 ...

  3. 群晖DS218+部署PostgreSQL(docker)

    欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 起因是懒 最近在开发中要用到PostgreSQL数据库 ...

  4. AI绘画| 迪士尼风格|可爱头像【附Midjourney提示词】

    Midjourney案例分享 图片预览 迪士尼风格|可爱头像 高清原图及关键词Prompt已经放在文末网盘,需要的自取 在数字艺术的新时代,人工智能绘画已经迅速崭露头角.作为最先进的技术之一,AI绘画 ...

  5. 重磅| Falcon 180B 正式在 Hugging Face Hub 上发布!

    引言 我们很高兴地宣布由 Technology Innovation Institute (TII) 训练的开源大模型 Falcon 180B 登陆 Hugging Face! Falcon 180B ...

  6. 拯救“消失的她”——双系统grub完美恢复方案

    双系统grub意外消失怎么办? 不用重装系统.不用去维修店.不会丢数据,教你一招,完美恢复grub! 背景 我的电脑是windows和linux双系统,启动项使用的grub.某天准备切换linux时突 ...

  7. jenkins部署及gitlab联调

    jenkins部署及gitlab联调 目录 jenkins部署及gitlab联调 一.jenkins安装 1.环境优化 2.安装jdk java 环境 3.下载jenkins 4.启动Jenkins服 ...

  8. 使用JAVA调用KRPANO加密XML

    KRPano自带的命令行工具krpanotools可以加密XML,具体的参数说明如下语法:   krpanotools32.exe encrypt [OPTIONS] inputfiles input ...

  9. 记一次 .NET 某电力系统 内存暴涨分析

    一:背景 1. 讲故事 前些天有位朋友找到我,说他生产上的程序有内存暴涨情况,让我帮忙看下怎么回事,最简单粗暴的方法就是让朋友在内存暴涨的时候抓一个dump下来,看一看大概就知道咋回事了. 二:Win ...

  10. 算法解析:LeetCode——机器人碰撞和最低票价

    摘要:本文由葡萄城技术团队原创.转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 机器人碰撞 问题: 现有 n 个机器人,编号从 1 开始,每个机器人包含在路 ...