2024-06-15:用go语言,Alice 和 Bob 在一个环形草地上玩一个回合制游戏。

草地上分布着一些鲜花,其中 Alice 到 Bob 之间顺时针方向有 x 朵鲜花,逆时针方向有 y 朵鲜花。

游戏规则如下:

1.游戏从 Alice 开始。

2.每个回合中,当前玩家必须选择顺时针或逆时针,并在所选方向上摘取一朵鲜花。

3.游戏继续直到所有鲜花都被摘完,此时当前玩家捕捉到对手,获得胜利。

给定两个整数 n 和 m,任务是找出满足以下条件的所有 (x, y) 对:

1.满足游戏规则,使得 Alice 必须获胜。

2.Alice 顺时针方向上鲜花数 x 在区间 [1, n] 内。

3.Alice 逆时针方向上鲜花数 y 在区间 [1, m] 内。

要求计算满足条件的数对 (x, y) 的总数量。

输入:n = 3, m = 2。

输出:3。

答案2024-06-15:

chatgpt

题目来自leetcode3021。

大体步骤如下:

根据题目描述和给定的代码,我们可以分步描述大致过程如下:

1.首先,我们定义了一个名为flowerGame的函数,该函数接受两个整数参数n和m,并返回一个int64类型的值。

2.在main函数中,我们初始化了n为3,m为2,并调用了flowerGame函数并打印输出结果。

接下来,针对题目描述的游戏规则和要求,我们可以进行如下分析:

1.游戏从Alice开始,每个回合Alice必须选择顺时针或逆时针方向摘取一朵鲜花,直到所有鲜花都被摘完。

2.我们需要找出满足条件的所有(x, y)对,其中x为Alice顺时针方向上的鲜花数,y为Alice逆时针方向上的鲜花数。

3.要使Alice获胜,需要满足游戏规则,即Alice在顺时针和逆时针方向上摘取鲜花,最终捕捉到Bob,获得胜利。

4.x的取值范围在[1, n]内,y的取值范围在[1, m]内。

5.我们需要计算满足条件的数对(x, y)的总数量。

总的时间复杂度为O(1),因为无论输入的n和m的值如何变化,计算数量的步骤都是固定的,不随输入规模增大而增加。总的额外空间复杂度也为O(1),因为除了存储输入n和m的变量外,没有使用额外的空间来存储数据。

Go完整代码如下:

package main

import "fmt"

func flowerGame(n, m int) int64 {
return int64(n) * int64(m) / 2
}
func main() { n:=3
m:=2
fmt.Println(flowerGame(n,m))
}

Python完整代码如下:

# -*-coding:utf-8-*-

def flower_game(n, m):
return int(n) * int(m) // 2 def main():
n = 3
m = 2
print(flower_game(n, m)) if __name__ == "__main__":
main()

2024-06-15:用go语言,Alice 和 Bob 在一个环形草地上玩一个回合制游戏。 草地上分布着一些鲜花,其中 Alice 到 Bob 之间顺时针方向有 x 朵鲜花,逆时针方向有 y 朵鲜花的更多相关文章

  1. C语言学习_C如何在一个文件里调用另一个源文件中的函数

    问题 C如何在一个文件里调用另一个源文件中的函数,如题. 解决办法 当程序大了代码多了之后,想模块化开发,不同文件中存一点,是很好的解决办法,那我们如何做才能让各个文件中的代码协同工作呢?我们知道,m ...

  2. C语言的本质(15)——C语言的函数接口入门

    C语言的本质(15)--C语言的函数接口 函数的调用者和其实现者之间存在一个协议,在调用函数之前,调用者要为实现者提供某些条件,在函数返回时,实现者完成调用者需要的功能. 函数接口通过函数名,参数和返 ...

  3. CAD与用户互在图面上得到一个矩形框(com接口VB语言)

    主要用到函数说明: MxDrawXCustomFunction::ExApp_CutDwg 与用户互在图面上得到一个矩形框,详细说明如下: 参数 说明 IN DOUBLE dX1 保存范围的左下角位置 ...

  4. go语言,golang学习笔记4 用beego跑一个web应用

    go语言,golang学习笔记4 用beego跑一个web应用 首页 - beego: 简约 & 强大并存的 Go 应用框架https://beego.me/ 更新的命令是加个 -u 参数,g ...

  5. CAD与用户交互在图面上选择一个实体(com接口VB语言)

    主要用到函数说明: IMxDrawUtility::GetEntity 与用户交互到在图面上选择一个实体,详细说明如下: 参数 说明 [out] IMxDrawPoint** pPickPoint 返 ...

  6. C语言程序设计100例之(25):确定进制

    例25    确定进制 问题描述 6*9 = 42 对于十进制来说是错误的,但是对于13进制来说是正确的.即 6(13)* 9(13)= 42(13),因为,在十三进制中,42 = 4 * 13 + ...

  7. H - Solve this interesting problem 分类: 比赛 2015-07-29 21:06 15人阅读 评论(0) 收藏

    Have you learned something about segment tree? If not, don't worry, I will explain it for you.  Segm ...

  8. 15、R语言聚类树的绘图原理

    聚类广泛用于数据分析.去年研究了一下R语言聚类树的绘图原理.以芯片分析为例,我们来给一些样品做聚类分析.聚类的方法有很多种,我们选择Pearson距离.ward方法. 选择的样品有: "GS ...

  9. 1026 程序运行时间 (15 分)C语言

    题目描述 要获得一个C语言程序的运行时间,常用的方法是调用头文件time.h,其中提供了clock()函数,可以捕捉从程序开始运行到clock()被调用时所耗费的时间.这个时间单位是clock tic ...

  10. 1046 划拳 (15 分)C语言

    划拳是古老中国酒文化的一个有趣的组成部分.酒桌上两人划拳的方法为:每人口中喊出一个数字,同时用手比划出一个数字.如果谁比划出的数字正好等于两人喊出的数字之和,谁就赢了,输家罚一杯酒.两人同赢或两人同输 ...

随机推荐

  1. DE10-Lite输入/出高/低电平说明

    DE10-Lite输入/出高/低电平说明 DE10-Lite实验板上有一些设备可以输入/出高/低电平,说明如下: HEX 7-segment LED displays (active low)共阳极 ...

  2. Educational Codeforces Round 162 (Rated for Div. 2) E

    E:Link 枚举路径两端的颜色 \(k\). 令 \(g[x]\) 表示满足以下条件的点 \(y\) 数量. $ y \in subtree[x]$ \(col[y] = k\) \(y\) 到 \ ...

  3. 用友BIP全面预算

    全面预算是企业在经营过程中制定并实施的一种财务管理工具,它考虑了企业的各个方面,包括销售.采购.生产.财务.人力资源等,以全面的视角规划和控制企业的财务活动. 用友BIP全面预算数智化解决方案利用了& ...

  4. .Net 8.0 下的新RPC,IceRPC之如何创建连接connection

    作者引言 很高兴啊,我们来到了IceRPC之如何创建连接connection,基础引导,让自已不在迷茫,快乐的畅游世界. 如何创建连接connection 学习如何使用IceRPC,创建和接受连接. ...

  5. ORA-600 [kkqjpdpvpd: no join pred found.]

    场景 一个比较大的sql查询,报出了ORA-600 [kkqjpdpvpd: no join pred found.] 解决方法: 根据metalink提供的解决思路.当于当前session,执行如下 ...

  6. 美团二面:SpringBoot读取配置优先级顺序是什么?

    引言 Spring Boot作为一种轻量级的Java应用程序框架,以其开箱即用.快速搭建新项目的特性赢得了广大开发者的青睐.其核心理念之一就是简化配置过程,使开发者能够快速响应复杂多变的生产环境需求. ...

  7. JOISC2018 题解

    \(\text{By DaiRuiChen007}\) Contest Link A. Construction of Highway Problem Link 题目大意 给 \(n\) 个点,初始每 ...

  8. three.js教程2-几何体BufferGeomety顶点

    1.网格模型(三角形概念) 网格模型Mesh其实就一个一个三角形(面)拼接构成.使用使用网格模型Mesh渲染几何体geometry,就是几何体所有顶点坐标三个为一组,构成一个三角形,多组顶点构成多个三 ...

  9. CSS布局概念与技术教程

    以下是一份CSS布局学习大纲,它涵盖了基本到高级的CSS布局概念和技术 引言 欢迎来到CSS教程!如果你已经掌握了HTML的基础知识,那么你即将进入一个全新的世界,通过学习CSS(Cascading ...

  10. PageOffice 在线编辑 office文件,回调父页面

    一.子页面调用父页面的方法 var value=window.external.CallParentFunc("ParentFunName(Arguments);");//父页面的 ...