全文速览

  • python的不同缓存组件的使用场景和使用样例
  • cachetools的使用

项目背景

代码检查项目,需要存储每一步检查的中间结果,最终把结果汇总并写入文件中

在中间结果的存储中

  • 可以使用context进行上下文的传递,但是整体对代码改动比较大,违背了开闭原则
  • 也可以利用缓存存储,处理完成之后再统一读缓存并写入文件

在权衡了不同方案后,我决定采用缓存来存储中间结果。接下来,我将探讨 Python 中可用缓存组件。

python缓存分类

决定选择缓存,那么python中都有哪些类型的缓存呢?

1. 使用内存缓存(如 functools.lru_cache

这是最简单的一种缓存方法,适用于小规模的数据缓存。使用 functools.lru_cache 可以对函数结果进行缓存。

from functools import lru_cache

@lru_cache(maxsize=128)
def expensive_function(param1, param2):
# 进行一些耗时的操作
return result

2. 使用本地文件缓存(如 diskcache

如果缓存的数据较大,或者需要跨进程共享缓存,可以使用文件系统缓存库,例如 diskcache

import diskcache as dc

cache = dc.Cache('/tmp/mycache')

@cache.memoize(expire=3600)
def expensive_function(param1, param2):
# 进行一些耗时的操作
return result

3. 使用分布式缓存(如 Redis)

对于需要跨多个应用实例共享缓存的数据,可以使用 Redis 这样的分布式缓存系统。

import redis
import pickle r = redis.StrictRedis(host='localhost', port=6379, db=0) def expensive_function(param1, param2):
key = f"{param1}_{param2}"
cached_result = r.get(key)
if cached_result:
return pickle.loads(cached_result) result = # 进行一些耗时的操作
r.set(key, pickle.dumps(result), ex=3600) # 设置缓存过期时间为1小时
return result

总结

如果只是简单的小规模缓存,lru_cache 足够;如果需要持久化或分布式缓存,可以考虑使用 diskcache 或 Redis;如果使用了 Web 框架,使用框架自带的缓存功能会更方便。

python内存缓存分类

兼顾速度和成本以及实现的复杂度,最终决定使用内存缓存,在 Python 中,内存缓存组件有许多选择,每种都有其特定的优点和适用场景。以下是一些常见的内存缓存组件:

1. functools.lru_cache

lru_cache 是 Python 标准库中的一个装饰器,用于缓存函数的返回结果,基于最近最少使用(LRU)策略。

from functools import lru_cache

@lru_cache(maxsize=128)
def expensive_function(param1, param2):
# 进行一些耗时的操作
return result

2. cachetools

cachetools 是一个第三方库,提供了多种缓存策略,包括 LRU、LFU、TTL(基于时间的缓存)等。

from cachetools import LRUCache, cached

cache = LRUCache(maxsize=100)

@cached(cache)
def expensive_function(param1, param2):
# 进行一些耗时的操作
return result

3. django.core.cache

如果使用 Django 框架,Django 自带了缓存框架,支持多种缓存后端,包括内存缓存。

settings.py 中配置内存缓存:

CACHES = {
'default': {
'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
'LOCATION': 'unique-snowflake',
}
}

4. Flask-Caching

如果使用 Flask 框架,Flask-Caching 插件可以方便地实现内存缓存。

from flask import Flask
from flask_caching import Cache app = Flask(__name__)
cache = Cache(app, config={'CACHE_TYPE': 'simple'}) @app.route('/expensive')
@cache.cached(timeout=60)
def expensive_function():
# 进行一些耗时的操作
return result

5. requests_cache

requests_cache 是一个专门用于缓存 HTTP 请求的库,支持多种缓存后端,包括内存缓存。

import requests
import requests_cache requests_cache.install_cache('demo_cache', backend='memory', expire_after=3600) response = requests.get('https://api.example.com/data')

6. dogpile.cache

dogpile.cache 是一个更高级的缓存库,提供了灵活的缓存后端和缓存失效策略。

from dogpile.cache import make_region

region = make_region().configure(
'dogpile.cache.memory',
expiration_time=3600
) @region.cache_on_arguments()
def expensive_function(param1, param2):
# 进行一些耗时的操作
return result

7. joblib.Memory

joblib.Memory 常用于科学计算和数据处理领域,用于缓存函数的计算结果。

from joblib import Memory

memory = Memory(location='/tmp/joblib_cache', verbose=0)

@memory.cache
def expensive_function(param1, param2):
# 进行一些耗时的操作
return result

总结

根据具体需求和使用场景选择合适的内存缓存组件。对于简单的缓存需求,可以使用 functools.lru_cachecachetools。对于 Web 应用,django.core.cacheFlask-Caching 是不错的选择。对于 HTTP 请求缓存,可以使用 requests_cache。对于科学计算,joblib.Memory 是一个好选择。

cachetools使用

我的项目是一个命令行执行的项目,综合考量最终决定选择cachetools

  1. 安装 cachetools
pip install cachetools
  1. 实现缓存工具类
from cachetools import LRUCache
from cachetools import Cache
from siada.cr.logger.logger import logger class CacheUtils:
"""
缓存工具类
""" def __init__(self, cache: Cache = None):
self.cache = cache if cache else LRUCache(maxsize=100) def get_value(self, cache_key: str):
value = self.cache.get(cache_key, None)
if value is not None:
logger.info(f"Cache hit for key: {cache_key}")
else:
logger.info(f"Cache miss for key: {cache_key}")
return value def set_key_value(self, cache_key: str, value):
self.cache[cache_key] = value
logger.info(f"Set cache key: {cache_key} with value: {value}") def set_key_list(self, cache_key: str, value):
v = self.cache.get(cache_key, None)
if v is not None:
v.append(value)
else:
self.cache[cache_key] = [value] def clear_cache(self):
self.cache.clear() # TODO 如果后续生成过程改为多线程并发,需考虑数据竞争问题
cache = CacheUtils()

更多惊喜

我还将定期分享:

  • 最新互联网资讯:让你时刻掌握行业动态。

  • AI前沿新闻:紧跟技术潮流,不断提升自我。

  • 技术分享与职业发展:助你在职业生涯中走得更远、更稳。

  • 程序员生活趣事:让你在忙碌的工作之余找到共鸣与乐趣。

关注回复【1024】惊喜等你来拿!

点击查看惊喜

敬请关注【程序员世杰】

10分钟掌握Python缓存的更多相关文章

  1. 10分钟上手python pandas

    目录 Environment 开始 对象创建 查看数据 选择 直接选择 按标签选择 按位置选择 布尔索引 设置 缺失数据 操作 统计 应用(apply) 直方图化(Histogramming) 字符串 ...

  2. 10分钟学会Python函数基础知识

    看完本文大概需要8分钟,看完后,仔细看下代码,认真回一下,函数基本知识就OK了.最好还是把代码敲一下. 一.函数基础 简单地说,一个函数就是一组Python语句的组合,它们可以在程序中运行一次或多次运 ...

  3. 10分钟用Python告诉你两个机器人聊天能聊出什么火花

    欲直接下载代码文件,关注我们的公众号哦!查看历史消息即可! 现在不是讲各种各样的人工智能嘛,AI下棋,AI客服,AI玩家--其实我一直很好奇,两个AI碰上会怎样,比如一起下棋,一起打游戏-- 今天做个 ...

  4. 10分钟学会Python

    #1. 语法 Python中没有强制的语句终止字符,代码块是通过缩进来指示的.缩进表示一个代码块的开始,逆缩进则表示一个代码块的结束.一般用4个空格来表示缩进. 声明以冒号(:)字符结束,并且开启一个 ...

  5. 程序员如何 10 分钟用 Python 画出蒙娜丽莎?

    之前看到过很多头条,说哪国某人坚持了多少年自学使用excel画画,效果十分惊艳.对于他们的耐心我十分敬佩. 但是作为一个程序员,自然也得挑战一下自己. 这种需求,我们十分钟就可以完成! 基本思路   ...

  6. [转]10分钟入门python

    本原创文章属于<Linux大棚>博客,博客地址为http://roclinux.cn.文章作者为Rocrocket Wu. 为了防止某些网站的恶性转载,特在每篇文章前加入此信息,还望读者体 ...

  7. 10分钟用Python爬取最近很火的复联4影评

    欲直接下载代码文件,关注我们的公众号哦!查看历史消息即可! <复仇者联盟4:终局之战>已经上映快三个星期了,全球票房破24亿美元,国内票房破40亿人民币. 虽然现在热度逐渐下降,但是我们还 ...

  8. 【python】10分钟教你用python打造贪吃蛇超详细教程

    10分钟教你用python打造贪吃蛇超详细教程 在家闲着没妹子约, 刚好最近又学了一下python,听说pygame挺好玩的.今天就在家研究一下, 弄了个贪吃蛇出来.希望大家喜欢. 先看程序效果: 0 ...

  9. 10分钟教你用Python打造天气机器人+关键字自动回复+定时发送

    01 前言 Hello,各位小伙伴.自上次我们介绍了Python实现天气预报的功能以后,那个小程序还有诸多不完善的地方,今天,我们再次来完善一下我们的小程序.比如我们想给机器人发“天气”等关键字,它就 ...

  10. 10分钟教你用Python打造微信天气预报机器人

    01 前言 最近武汉的天气越来越恶劣了.动不动就下雨,所以,拥有一款好的天气预报工具,对于我们大学生来说,还真是挺重要的了.好了,自己动手,丰衣足食,我们来用Python打造一个天气预报的微信机器人吧 ...

随机推荐

  1. 2019-8-31-dotnet-core-使用-PowerShell-脚本

    title author date CreateTime categories dotnet core 使用 PowerShell 脚本 lindexi 2019-08-31 16:55:58 +08 ...

  2. 都2024年了,你还不知道git worktree么?

    三年前 python 大佬吉多·范罗苏姆(为 Python 程序设计语言的最初设计者及主要架构师)才知道 git worktree ,我现在才知道,我觉得没啥丢人的. 应用场景 如果你正在 featu ...

  3. 【web安全】隐藏nginx头文件信息

    摘要 Nginx作为开源web中间件,被广泛应用.因此源编译或者yum安装,都会带有其原有的nginx版本.很容易被针对,因此,通过修改nginx的源码.隐藏nginx版本和头部信息,保障nginx的 ...

  4. Spring环境获取Spring的Bean

    一.测试数据准备 /* Navicat Premium Data Transfer Source Server : swp-mysql Source Server Type : MySQL Sourc ...

  5. Oracle数据库WHERE子查询按时间段查询用法(to_date函数)

    oracle中的to_date参数含义 1.日期格式参数 含义说明 D 一周中的星期几  DAY 天的名字,使用空格填充到9个字符  DD 月中的第几天  DDD 年中的第几天  DY 天的简写名   ...

  6. python教程6.3-time模块datetime模块

     由于time是基于Unix Timestamp,所以其所能表述的日期范围被限定在 1970 – 2038 之间.因此2038年后就不能用time了,建议使用datetime. time模块 有下面几 ...

  7. C语言:判断是否为素数,并且打印素数表

    /*     构造素数表, 只需要用数字除以已经判断出来的数是否能整除就行,     不需要除以这个数之前所有的数字,     前提是这个数除以的素数是要比他自己小的      */ 注意一点:int ...

  8. k8s&dapr开发部署实验(1)服务调用

    前置条件 安装docker与dapr: 手把手教你学Dapr - 3. 使用Dapr运行第一个.Net程序 安装k8s dapr 自托管模式运行 新建一个webapi无权限项目 launchSetti ...

  9. Debian中配置NIS:用户账号管理

    1.添加指定gid的组 groupadd -g 1001 upload # 添加了一个指定gid为1001的upload用户 2.添加指定uid的用户,并加入到指定组 useradd -u 1001 ...

  10. elementui table tree懒加载只能执行一次的解决办法

    绑定 table的:key为随机值,在每次查询更新table时,更改key,就能刷新 table tree 懒加载只能第一次有效的问题, 本来那个懒加载只能执行一次,即使重新绑定了数据列表,再展开,也 ...