Keys:

  1. What are Eigenvalues and Eigenvectors?
  2. How to find Eigenvalues and Eigenvectors?
  3. Applications of Egenvalues and Eigenvectors:
    • Difference equation \(u_{k+1}=Au_k\)
    • Solution of \(\frac{du}{dt}=Au\)
    • Markov Matrices
    • Projections and Fourier Series
  4. Special Matrix
    • Symmetric Matrices
    • Positive Definite Matrix
    • Similar Matrices
    • Jordan Theorem

6.1 Introduction to Eigenvalues and Eigenvectors

keys:

  1. If X lies along the same direction as AX : \(AX = \lambda X\),then \(\lambda\) is eigenvalue and X is eigenvector.
  2. If \(AX=\lambda X\) then \(A^2X=\lambda^2 X\) and \(A^{-1}X=\lambda^{-1} X\) and \((A+cI)X=(\lambda + c) X\) : the same eigenvector X.
  3. If \(AX=\lambda X\) then \((A-\lambda I)X=0\) and \(A-\lambda I\) is singular and \(det(A-\lambda I)=0\) can find eigenvalues and eigenvectors.
  4. Check : \(\lambda_1 + \lambda_2 + \cdots + \lambda_n = a_{11} + a_{22} + \cdots + a_{nn}\)
  5. Projection Matrix : \(\lambda = 1 \ and \ 0\);Reflections Matrix : \(\lambda = 1 \ and \ -1\);Rotations Matrix : \(\lambda = e^{i \theta} \ and \ e^{-i \theta}\)。

The Equation for the Eigenvalues and Eigenvectors

  1. Compute the determinant of \(A-\lambda I\).
  2. Find the roots of the polynomial of the determinant of \(A-\lambda I\),by solving det(\(A-\lambda I\)) = 0.
  3. For each eigenvalue \(\lambda\),solve \((A-\lambda I)X = 0\) to find an eigenvector X.

example:

\[A = \left[ \begin{matrix} 0&1 \\ 1&0 \end{matrix} \right] \\
\Downarrow \\
solve \ \ characteristic \ \ equation \\
det (A-\lambda I) = \left | \begin{matrix} -\lambda&1 \\ 1&-\lambda \end{matrix} \right| \\
\lambda_1 = 1 \ , \ x_1 = \left[ \begin{matrix} 1 \\ 1 \end{matrix} \right] \\
\lambda_2 = -1 \ , \ x_2 = \left[ \begin{matrix} 1 \\ -1 \end{matrix} \right] \\
check: \lambda_1 + \lambda_2 = a_{11} + a_{22} = 0,\ \ \lambda_1 \lambda_2 = detA = -1
\\
\]
\[B = \left[ \begin{matrix} 3&1 \\ 1&3 \end{matrix} \right] \\
\Downarrow \\
solve \ \ characteristic \ \ equation \\
det (B-\lambda I) = \left | \begin{matrix} 3-\lambda&1 \\ 1&3-\lambda \end{matrix} \right| \\
\lambda_1 = 4 \ , \ x_1 = \left[ \begin{matrix} 1 \\ 1 \end{matrix} \right] \\
\lambda_2 = 2 \ , \ x_2 = \left[ \begin{matrix} 1 \\ -1 \end{matrix} \right] \\
check: \lambda_1 + \lambda_2 = a_{11} + a_{22} = 6,\ \ \lambda_1 \lambda_2 = detB = 8
\\
\]

If \(AX=\lambda X\),the \((A+nI)X = \lambda X + nIX = (\lambda + n)X\);If eigenvectors of A is the same as eigenvectors of B, the \((A+B)X=(\lambda_{A} + \lambda_{B})X\).

Diagonalizing a Matrix

Eigenvectors of A for n different \(\lambda's\) are independent.Then we can diagonalize A.

The columns of X are eigenvectors.

So:

\[AX \\
= A \left[ \begin{matrix} x_1&x_2&\cdots&x_n\end{matrix} \right] \\
= \left[ \begin{matrix} \lambda_1x_1&\lambda_2x_2&\cdots&\lambda_2x_n\end{matrix} \right] \\
= \left[ \begin{matrix} x_1&x_2&\cdots&x_n\end{matrix} \right] \left[ \begin{matrix} \lambda_1&& \\
&\ddots&\\
&&\lambda_n
\end{matrix} \right] \\
=X\Lambda \\
\Downarrow \\
AX=X\Lambda \\
X^{-1}AX=\Lambda \ or \ A=X\Lambda X^{-1} \\
\Downarrow \\
A^k =(X\Lambda X^{-1})_1(X\Lambda X^{-1})_2\cdots (X\Lambda X^{-1})_k = X\Lambda^k X^{-1}
\]

example:

\[\left[ \begin{matrix} 1&5 \\ 0&6 \end{matrix} \right] =
\left[ \begin{matrix} 1&1 \\ 0&1 \end{matrix} \right]
\left[ \begin{matrix} 1&0 \\ 0&6 \end{matrix} \right]
\left[ \begin{matrix} 1&1 \\ 0&-1 \end{matrix} \right]
\\
\left[ \begin{matrix} 1&5 \\ 0&6 \end{matrix} \right]^k =
\left[ \begin{matrix} 1&1 \\ 0&1 \end{matrix} \right]
\left[ \begin{matrix} 1&0 \\ 0&6 \end{matrix} \right]^k
\left[ \begin{matrix} 1&1 \\ 0&-1 \end{matrix} \right] =
\left[ \begin{matrix} 1&1 \\ 0&1 \end{matrix} \right]
\left[ \begin{matrix} 1^k&0 \\ 0&6^k \end{matrix} \right]
\left[ \begin{matrix} 1&1 \\ 0&-1 \end{matrix} \right]
\]

When all \(|\lambda_i| < 0\),the \(A^k \rightarrow 0\).

6.2 Applications of Eigenvalue and Eigenvector

Difference equation \(u_{k+1} = Au_k\)

Matrix Powers \(A^k\) : \(u_{k}=A^ku_0 = (X \Lambda X^{-1})(X \Lambda X^{-1})\cdots(X \Lambda X^{-1})u_0=X \Lambda^k X^{-1}u_0\)

step1 :

\[u_0 = c_1x_1 + c_2x_2 + \cdots + c_nx_n =
\left[ \begin{matrix} x_1&x_2&\cdots&x_n \end{matrix}\right]
\left[ \begin{matrix} c_1\\c_2\\\vdots\\c_n \end{matrix}\right] = Xc \\
\Downarrow \\
c = X^{-1}u_0
\]

step2~3:

\[u_{k}=A^ku_0 = X \Lambda^k X^{-1} u_0 = X \Lambda^k c =
\left[ \begin{matrix} x_1&x_2&\cdots&x_n \end{matrix}\right]
\left[ \begin{matrix}
(\lambda_1)^k&& \\
&(\lambda_2)^k \\
&&\ddots \\
&&&(\lambda_n)^k\end{matrix} \right]
\left[ \begin{matrix} c_1\\c_2\\\vdots\\c_n \end{matrix}\right] \\
\Downarrow \\
u_k = c_1(\lambda_1)^kx_1 + c_2(\lambda_2)^kx_2 + \cdots + c_n(\lambda_n)^kx_n
\]

It solves \(u_{k+1} = Au_k\)

example:

Fibonacci Numbers: 0,1,1,2,3,5,8,13...

\(F_{k+2}=F_{k+1}+F_{k}\)

Let \(u_k = \left[ \begin{matrix} F_{k+1}\\F_k \end{matrix}\right]\)

\[F_{k+2} = F_{k+1} + F_{k} \\
F_{k+1} = F_{k+1} \\
\Downarrow \\
u_{k+1}= \left[ \begin{matrix} 1&1\\1&0 \end{matrix} \right]u_{k} \\
\Downarrow \\
A=\left[ \begin{matrix} 1&1\\1&0 \end{matrix} \right] \\
det(A-\lambda I) = 0 \\
\Downarrow \\
\lambda_1 = \frac{1+\sqrt{5}}{2} =1.618, \ \
x_1=\left[ \begin{matrix} \lambda_1\\1\end{matrix}\right] \\
\lambda_2 = \frac{1-\sqrt{5}}{2} =-0.618, \ \
x_2=\left[ \begin{matrix} \lambda_2\\1\end{matrix}\right] \\
and \\
u_0 = \left[ \begin{matrix} 1\\0 \end{matrix}\right] =
c_1x_1 + c_2x_2
\rightarrow
c_1 = \frac{1}{\lambda_1 - \lambda_2}, c_2 = \frac{1}{\lambda_2 - \lambda_1} \\
\Downarrow \\
u_k = c_1(\lambda_1)^kx_1 + c_2(\lambda_2)^kx_2\\
u_{100} = \frac{(\lambda_1)^{100}x_1-(\lambda_2)^{100}x_2}{\lambda_1 - \lambda_2}
\]

Solution of du/dt = Au

key : \(e^{At}\)

Taylor Series : \(e^x = 1 + x + \frac{1}{2}x^2+\cdots+\frac{1}{n!}x^n\)

S is eigenvectors matrix of A.

\[e^{At} = I + At + \frac{1}{2}(At)^2+\cdots+\frac{1}{n!}(At)^n \\
A = S\Lambda S^{-1} \\
I = SS^{-1} \\
\Downarrow \\
e^{At} = SS^{-1} + S\Lambda S^{-1}t + \frac{1}{2}(S\Lambda S^{-1}t)^2+\cdots+\frac{1}{n!}(S\Lambda S^{-1}t)^n \\
=S (I+ \Lambda t + \frac{1}{2}(\Lambda t)^2+\cdots+\frac{1}{n!}(\Lambda t)^n)S^{-1} \\
\Downarrow \\
\Lambda = \left[ \begin{matrix}
\lambda_1&& \\
&\lambda_2 \\
&&\ddots \\
&&&\lambda_n\end{matrix} \right] \\
e^{\Lambda t} = \left[ \begin{matrix}
e^{\lambda_1t}&& \\
&e^{\lambda_2t} \\
&&\ddots \\
&&&e^{\lambda_nt}\end{matrix} \right] \\
\Downarrow \\
e^{At}=Se^{\Lambda t}S^{-1}
\]

Solve Steps:

  1. Find eigenvalues and eigenvectors of A by solving \(det(A-\lambda I)=0\).

  2. Write u(0) as a combination \(c_1x_1 + c_2x_2 + \cdots + c_nx_n\) of the eigenvectors of A.

  3. Multiply each eigenvector \(x_i\) by its growth factor \(e^{\lambda_i t}\).

  4. The solution is the combinations of those pure solutions \(e^{\lambda t}x\).

    \[\frac{du}{dt} = Au \\
    u(t) = c_1e^{\lambda_1 t}x_1 + c_2e^{\lambda_2 t}x_2 + \cdots + c_ne^{\lambda_n t}x_n
    \]

example:

\[\frac{du_1}{dt} = -u_1 + 2u_2 \\
\frac{du_2}{dt} = u_1 - 2u_2 \\
\Downarrow step1 \\
u' = Au = \left[ \begin{matrix} -1&2 \\ 1&-2 \end{matrix} \right] u \\
\lambda_1 = 0, x_1 = \left[ \begin{matrix} 2\\1 \end{matrix}\right] \\
\lambda_2 = -3, x_2 = \left[ \begin{matrix} -1\\1 \end{matrix}\right] \\
\Downarrow step2 \\
u(0) = \left[ \begin{matrix} 1\\0 \end{matrix} \right] =
c_1x_1 + c_2x_2 \\
c_1 = 1/3, c_2 = -1/3 \\
\Downarrow step3 \\
u(t) = c_1e^{\lambda_1 t}x_1 + c_2e^{\lambda_2 t}x_2
= 1/3 \left[ \begin{matrix} 2 \\ 1 \end{matrix} \right] -
1/3 e^{-3t}\left[ \begin{matrix} -1 \\ 1 \end{matrix} \right] \\
\Downarrow steady \ \ state\\
u(\infty) = 1/3 \left[ \begin{matrix} 2 \\ 1 \end{matrix} \right]
\]

State:

  1. Stabillity : \(u(t) -> 0 (e^{\lambda t}->0, real\ \ part\ \ \lambda < 0)\)
  2. Steady State : \(\lambda_1 = 0\) and other real part \(\lambda's < 0\)
  3. Blow up if any real part \(\lambda > 0\)

Markov Matrices

keys:

  1. All entries >=0.
  2. All columns add to 1.
  3. \(\lambda =1\) is one of eigenvalues.
  4. All other \(|\lambda_i|<1\).
  5. \(u_k = A^{k}u_0 = c_1\lambda_1^{k}x_1 + c_2\lambda_2^{k}x_2 + \cdots + c_n\lambda_n^{k}x_n \rightarrow c_1x_1 \ \ (steady \ \ state)\)

example: people movement model

\(u_{k+1} = Au_{k}\),A is Markov Matrix.

\[\left [ \begin{matrix} u_{col} \\ u_{mass} \end{matrix}\right]_{t=k+1} =
\left [ \begin{matrix} 0.9&0.2 \\ 0.1&0.8 \end{matrix}\right]
\left [ \begin{matrix} u_{col} \\ u_{mass} \end{matrix}\right]_{t=k} \\
\Downarrow \\
\lambda_1 = 1, x_1=\left [ \begin{matrix} 2 \\ 1 \end{matrix}\right] \\
\lambda_2 = 0.7, x_2=\left [ \begin{matrix} -1 \\ 1 \end{matrix}\right] \\
\]

if \(\left [ \begin{matrix} u_{col} \\ u_{mass} \end{matrix}\right]_{0} = \left [ \begin{matrix} 0 \\ 1000 \end{matrix}\right]\) , and \(c_1=1000/3, c_2=2000/3\)

\(u_k = c_1\lambda_1^{k}x_1+c_2\lambda_2^{k}x_2 = \frac{1000}{3}1^{k}\left [ \begin{matrix} 2 \\ 1 \end{matrix}\right] + \frac{2000}{3}0.7^{k}\left [ \begin{matrix} -1 \\ 1 \end{matrix}\right] \rightarrow \frac{1000}{3}\left [ \begin{matrix} 2 \\ 1 \end{matrix}\right]\) (steady state)

?Projections and Fourier Series

Projections with orthonormal basis:

\[Q = \left [ \begin{matrix} q_1&q_2&\cdots&q_n \end{matrix}\right],Q^{T}=Q^{-1}\\
V = x_1q_1 + x_2q_2 + \cdots + x_nq_n =
\left [ \begin{matrix} q_1&q_2&\cdots&q_n \end{matrix}\right]
\left [ \begin{matrix} x_1\\x_2\\\vdots\\x_n \end{matrix}\right]
=QX \\
\Downarrow \\
Q^{-1}V = Q^{-1}QX \\
\Downarrow \\
Q^{T}V = X
\]

Fourier series:

\(f(x) = a_0 + a_1cosx + b_1sinx + a_2cos2x + b_2sin2x + \cdots + b_nsinnx\)

(\(1,cosx,sinx,cos2x,sin2x...\)) are basis of f(x)

check: \(f(x) = f(x+ 2\pi)\)

\(f^Tg = \int_{0}^{2\pi}f(x)g(x)dx=0\) with f(x) = 1,cosx,sinx,cos2x,sin2x..., g(x) = 1,cosx,sinx,cos2x,sin2x..., \(f(x) \neq g(x)\)

example:

\(\int_{0}^{2\pi}f(x)cosxdx= \int_{0}^{2\pi}(a_0cosx + a_1(cosx)^2 + b_1cosxsinx...)dx= a_1\int_{0}^{2\pi} (cosx)^2 dx = a_1\pi\)

\(a_1 = \frac{1}{\pi}\int_{0}^{2\pi}f(x)cosxdx\)

6.3 Special Matrix

6.3.1 Symmetric Matrices

keys:

  1. A symmetric matrix S has n real eigenvalues \(\lambda_i\) and n orthonormal eigenvectors \(q_1,q_2,...,q_n\).
  2. Every real symmetric S can be diagonalized: \(S=Q \Lambda Q^{-1} = Q \Lambda Q^{T} =\left[ \begin{matrix} q_1&q_2&\cdots&q_n \end{matrix}\right]
    \left[ \begin{matrix}
    \lambda_1&& \\
    &\lambda_2 \\
    &&\ddots \\
    &&&\lambda_n\end{matrix} \right]
    \left[ \begin{matrix} q_1^{T}\\q_2^{T}\\\vdots\\q_n^{T} \end{matrix}\right]\).
  3. The number of positive eigenvalues of S equals the number of positive pivots.
  4. Antisymmetric matrices \(A = A^{-T}\) have imaginary \(\lambda's\) and orthonormal (complex) q's.

example:

\[S = \left[ \begin{matrix} 1&2 \\ 2&4 \end{matrix}\right] \\
S-\lambda I = \left[ \begin{matrix} 1-\lambda&2 \\ 2&4-\lambda \end{matrix}\right]\\
\Downarrow\\
\lambda_1 = 0, x_1=\left[ \begin{matrix} 2 \\ -1 \end{matrix}\right] \\
\lambda_2 = 5, x_2=\left[ \begin{matrix} 1 \\ 2 \end{matrix}\right] \\
\Downarrow\\
Q^{-1}SQ = \frac{1}{\sqrt{5}}
\left[ \begin{matrix} 2&-1 \\ 1&2 \end{matrix}\right]
\left[ \begin{matrix} 1&2 \\ 2&4 \end{matrix}\right]
\frac{1}{\sqrt{5}}\left[ \begin{matrix} 2&1 \\ -1&2 \end{matrix}\right]
=\left[ \begin{matrix} 0&0 \\ 0&5 \end{matrix}\right] = \Lambda
\]

6.3.2 Positive Definite Matrix

keys:

  1. Symmetric S : all eigenvalues > 0 \(\Leftrightarrow\) all pivots > 0 \(\Leftrightarrow\) all upper left determinants > 0

  2. The Symmetric S is the postive definite : \(x^TSx > 0\) for all vectors \(x\neq0\).

  3. \(A^TA\) is positive definite matrix.

    proof: A is m by n

    \[x^T(A^TA)x = (Ax)^T(Ax) = |Ax|^2 >= 0 \\
    if \ \ A \ \ rank=n \\
    |Ax|^2 >0
    \]

    \(A^TA\) is positive definite matrix.

    \(A^TA\) is invertible, that \(\widehat{x} = (A^TA)^{-1}A^Tb\) work fine.

example:

\[S = \left [ \begin{matrix} 2&-1&0 \\ -1&2&-1 \\ 0&-1&2 \end{matrix}\right] \\
pivots : 2,3/2,4/3 >0 \\
left \ \ upper \ \ det : 2,3,4 >0 \\
eigenvalues : 2-\sqrt{2},2,2+\sqrt{2} \\
f = x^TSx = 2x_1^2 + 2x_2^2 + 2x_3^2-2x_1x_2-2x_2x_3 = (x_1-x_2)^2 + (x_2-x_3)^2 + x_1^2 > 0
\]

so A is positive definite matrix.

Minimum :

First derivatives : \(\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial x_2} = \frac{\partial f}{\partial x_3} =0\)

Second derivatives : \(\frac{\partial^2 f}{\partial x_1^2} = \frac{\partial^2 f}{\partial x_2^2} = \frac{\partial^2 f}{\partial x_3^2} >0\)

Maximum :

First derivatives : \(\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial x_2} = \frac{\partial f}{\partial x_3} =0\)

Second derivatives : \(\frac{\partial^2 f}{\partial x_1^2} = \frac{\partial^2 f}{\partial x_2^2} = \frac{\partial^2 f}{\partial x_3^2} <0\)

when \(f = x^TAx = 2x_1^2 + 2x_2^2 + 2x_3^2-2x_1x_2-2x_2x_3 = (x_1-x_2)^2 + (x_2-x_3)^2 + x_1^2 = 1\)

\(x^TAx=1\) describe an ellipse in 4D, with \(A=Q\Lambda Q^{T}\), Q are the directions of the principal axes, \(\Lambda\) are the lengths of those axes.

6.3.3 Similar Matrices

if \(B = M^{-1}AM\) for some matrix M, that A and B are similar.

example: \(A = \left [ \begin{matrix} 2&1 \\ 1&2 \end{matrix}\right]\)

  1. Special example: A is similar to \(\Lambda\),\(S^{-1}A S = \Lambda \ 或 \ A=S^{-1}\Lambda S \Rightarrow \Lambda = \left [ \begin{matrix} 3&0 \\ 0&1 \end{matrix}\right]\);

  2. other :

    \[B = M^{-1}AM =\left [ \begin{matrix} 1&-4 \\ 0&1 \end{matrix}\right]
    \left [ \begin{matrix} 2&1 \\ 1&2 \end{matrix}\right]
    \left [ \begin{matrix} 1&4 \\ 0&1 \end{matrix}\right]
    =
    \left [ \begin{matrix} -2&-15 \\ 1&6 \end{matrix}\right]
    \]

    \(A,\Lambda,B\) have the same \(\lambda's\).

    • A and \(\Lambda\) with same eigenvalues and eigenvectors.
    • A and B with same eigenvalues and numbers of eigenvectors, different eigenvectors.(\(X_B=M^{-1}X_A\))

?6.3.4 Jordan Theorem

Every square A is similar to a Jordan matrix:

Numbers of Jordan blocks is equal to numbers of eigenvectors.

\[J = \left [ \begin{matrix} J_1&&&\\&J_2&&\\&&\ddots&\\&&&J_d\end{matrix}\right]
\]

Good : \(J=\Lambda\),(d=n)

6. Eigenvalues and Eigenvectors的更多相关文章

  1. OpenCascade Eigenvalues and Eigenvectors of Square Matrix

    OpenCascade Eigenvalues and Eigenvectors of Square Matrix eryar@163.com Abstract. OpenCascade use th ...

  2. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. 方差variance, 协方差covariance, 协方差矩阵covariance matrix | scatter matrix | weighted covariance | Eigenvalues and eigenvectors

    covariance, co本能的想到双变量,用于描述两个变量之间的关系. correlation,相关性,covariance标准化后就是correlation. covariance的定义: 期望 ...

  4. Applying Eigenvalues to the Fibonacci Problem

    http://scottsievert.github.io/blog/2015/01/31/the-mysterious-eigenvalue/ The Fibonacci problem is a ...

  5. 【线性代数】6-1:特征值介绍(Introduction to Eigenvalues)

    title: [线性代数]6-1:特征值介绍(Introduction to Eigenvalues) categories: Mathematic Linear Algebra keywords: ...

  6. OpenCV人脸识别Eigen算法源码分析

    1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本 ...

  7. Function Set in OPEN CASCADE

    Function Set in OPEN CASCADE eryar@163.com Abstract. The common math algorithms library provides a C ...

  8. Introduction to graph theory 图论/脑网络基础

    Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...

  9. Matrix Factorization SVD 矩阵分解

    Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge ...

  10. OpenCV中的矩阵操作

    函数 Description 说明 cvAdd Elementwise addition of two arrays 两个数组对应元素的和 cvAddS Elementwise addition of ...

随机推荐

  1. DataGear 制作基于 three.js 的 3D 数据可视化看板

    DataGear专业版 1.0.0 已发布,欢迎试用! http://datagear.tech/pro/ DataGear 支持采用原生的HTML.JavaScript.CSS制作数据可视化看板,也 ...

  2. 【Azure 应用服务】App Service for Linux环境中,如何解决字体文件缺失的情况

    问题描述 部署在App Service for Linux环境中的Web App.出现了字体文件缺失的问题,页面显示本来时中文的地方,区别变为方框占位. 问题分析 在应用中,通常涉及到显示问题的有两个 ...

  3. 【Azure Fabric Service】Service Fabric 遇见错误信息记录 - The process/container terminated with exit code:2148734499

    问题描述 Service Fabric 在升级 Application 过程中,发布了新的代码后,启动应用中遇见了如下错误: Error message: System.Hosting' report ...

  4. 【Azure 应用服务】如何查看App Service Java堆栈JVM相关的参数默认配置值?

    问题描述 如何查看App Service Java堆栈JVM相关的参数默认配置值? 问题解答 可以通过App Service的高级管理工具(kudu:)来查看JVM的相关参数,使用命令:java -X ...

  5. JAVA微服务分布式事务的几种实现方式

    基础理论 CAP理论 一致性(Consistency) :在分布式系统中所有的数据备份,在同一时刻都保持一致状态,如无法保证状态一致,直接返回错误: 可用性(Availability):在集群中一部分 ...

  6. 11 .Codeforces Round 891 (Div. 3)E. Power of Points(推公式+前缀和优化)

    E. Power of Points 题解参考 #include <bits/stdc++.h> #define int long long #define rep(i, a, b) fo ...

  7. springboot中使用restTemplate发送带参数和请求头的post,get请求

    最近在工作中使用到了用restTemplate去获取网站数据填入到数据库中,在这里记录下来以便以后使用: 添加相关依赖:版本使用springboot中的 <dependency> < ...

  8. Python根据时间命名并创建文件源码

    自己写的,产品中验证ok的代码,直接上实例: import time def file_create_func(): loca = time.strftime('%Y-%m-%d-%H-%M-%S') ...

  9. AQS很难,面试不会?看我一篇文章吊打面试官

    AQS很难,面试不会?看我一篇文章吊打面试官 大家好,我是小高先生.在这篇文章中,我将和大家深入探索Java并发包(JUC)中最为核心的概念之一 -- AbstractQueuedSynchroniz ...

  10. 5G+实时云渲染,助力虚拟仿真实训教学升级

    随着新冠疫情走向全球大流行的发展趋势,学校教育被迫迁徙到线上教学平台,供需平衡被打破,疫情让"在线教学"成为"口罩式的刚需". 我们看到互联网+教育带来便利的同 ...