FIFO设计
- first in first out,先进先出
- fifo是基于RAM进行设计的
双端口RAM设计(16*8)
- 如果大的RAM可以调用IP
- RAM的关键参数:深度和宽度
module dual_ram
#(
parameter ADDR_WIDTH = 4,
parameter RAM_WIDTH = 8,
parameter DLY=1
)
(
input wire read_clk ,
input wire write_clk ,
input wire [ADDR_WIDTH-1:0] read_addr ,
input wire [ADDR_WIDTH-1:0] write_addr ,
input wire read_allow ,
input wire write_allow ,
input wire [RAM_WIDTH-1:0] write_data ,
output reg [RAM_WIDTH-1:0] read_data
);
reg [RAM_WIDTH-1:0] memory [ADDR_WIDTH-1:0];
always @(posedge read_clk) begin
if(read_allow)
read_data <= #DLY memory[read_addr];
end
always @(posedge write_clk) begin
if(write_allow)
memory[write_addr] <= #DLY write_data;
end
endmodule
单端口ram
module single_port_ram
#(
parameter ADDR_WIDTH = 8,
parameter RAM_WIDTH = 8,
parameter RAM_DEPTH = 255,
parameter DLY = 1
)
(
input wire clk,
input wire rst_n,
input wire [ADDR_WIDTH-1:0] addr,
input wire wr_en, // 1-write 0-read
input wire [RAM_WIDTH-1:0] wdata,
output wire [RAM_WIDTH-1:0] rata
);
reg [RAM_DEPTH-1:0] mem [RAM_WIDTH-1:0];
integer i;
always @(posedge clk or negedge rst_n) begin
if(rst_n)
for(i=0;i<=255;i=i+1) begin
mem[i] = 16'h0000;
end
else if(wr_en)
mem[addr] <= wdata;
end
assign radta = (!wr_en) ? mem[addr] : 16'h0000 ;
// always @(posedge clk or negedge rst_n) begin
// if(!rst_n)
// radta <= 'h0;
// else if(!wr_en)
// r_data <= mem[addr];
// end
endmodule
同步FIFO设计
module sync_fifo_counter
#(
parameter ADDR_WIDTH = 9,
parameter RAM_WIDTH = 8
)
(
input wire fifo_clk,
input wire fifo_rst_n,
input wire read_en,
input wire write_en,
input wire [RAM_WIDTH-1:0] w_data,
output wire [RAM_WIDTH-1:0] r_data,
output reg empty,
output reg full,
output reg [ADDR_WIDTH-1:0] fcounter
);
reg [ADDR_WIDTH-1:0] write_addr;
reg [ADDR_WIDTH-1:0] read_addr;
wire write_allow = write_en && (!empty);
wire read_allow = read_en && (!full);
// empty
always @(posedge fifo_clk or negedge fifo_rst_n) begin
if(fifo_rst_n)
empty <= 1'b1;
else
empty <= (!write_allow) && (fcounter[ADDR_WIDTH-1:1] == 8'h0) && (fcounter[0] == 0||read_allow);
end
// full
always @(posedge fifo_clk or negedge fifo_rst_n) begin
if(fifo_rst_n)
full <= 1'b0;
else
full <= (!read_allow) && (fcounter[ADDR_WIDTH-1:1] == 8'hff) && (fcounter[0] == 1||write_allow);
end
always @(posedge fifo_clk or negedge fifo_rst_n) begin
if(fifo_rst_n)
fcounter <= {ADDR_WIDTH{1'b0}};
else if( (!read_allow) && (write_allow)||(read_allow) && (!write_allow)) begin
if(write_allow)
fcounter <= fcounter + 1'b1;
else
fcounter <= fcounter - 1'b1;
end
end
always @(posedge fifo_clk or negedge fifo_rst_n) begin
if(fifo_rst_n)
write_addr <= {ADDR_WIDTH{1'b0}};
else if(write_allow)
write_addr <= write_addr + 1'b1;
end
always @(posedge fifo_clk or negedge fifo_rst_n) begin
if(fifo_rst_n)
read_addr <= {ADDR_WIDTH{1'b0}};
else if(write_allow)
read_addr <= read_addr + 1'b1;
end
dual_ram u_dual_ram
(
.read_clk (fifo_clk),
.write_clk (fifo_clk),
.read_addr (read_addr),
.write_addr (write_addr),
.read_allow (read_allow),
.write_allow (write_allow),
.write_data (w_data),
.read_data (r_data)
);
endmodule
module sync_fifo
#(
parameter ADDR_WIDTH = 4,
parameter RAM_WIDTH = 8,
parameter RAM_DEPTH = 16
)
(
input wire fifo_clk,
input wire fifo_rst_n,
input wire read_en,
input wire write_en,
input wire [RAM_WIDTH-1:0] w_data,
output reg [RAM_WIDTH-1:0] r_data,
output wire empty,
output wire full
);
// 指针
reg [ADDR_WIDTH:0] write_addr;
reg [ADDR_WIDTH:0] read_addr;
wire [ADDR_WIDTH-1:0] w_addr;
wire [ADDR_WIDTH-1:0] r_addr;
wire write_allow = write_en && (!empty);
wire read_allow = read_en && (!full);
reg [RAM_WIDTH-1:0] mem [RAM_DEPTH-1:0];
always @(posedge fifo_clk or negedge fifo_rst_n) begin
if(!fifo_rst_n)
read_addr <= {ADDR_WIDTH{1'b0}};
else if(read_allow) begin
r_data <= mem[read_addr];
read_addr <= read_addr + 1;
end
end
always @(posedge fifo_clk or negedge fifo_rst_n) begin
if(!fifo_rst_n)
write_addr <= {ADDR_WIDTH{1'b0}};
else if(write_allow) begin
mem[write_addr] <= w_data;
write_addr <= write_addr + 1;
end
end
assign empty = read_addr == write_addr ? 1 : 0;
assign full = (read_addr[ADDR_WIDTH]!=write_addr[ADDR_WIDTH]) &&
(read_addr[ADDR_WIDTH-1:0] == write_addr[ADDR_WIDTH-1:0]);
assign r_addr = read_addr[ADDR_WIDTH-1:0];
assign w_addr = write_addr[ADDR_WIDTH-1:0];
endmodule
module sync_fifo_tb();
parameter ADDR_WIDTH = 4;
parameter RAM_WIDTH = 8;
parameter RAM_DEPTH = 16;
reg fifo_clk;
reg fifo_rst_n;
reg read_en;
reg write_en;
reg [RAM_WIDTH-1:0] w_data;
wire [RAM_WIDTH-1:0] rdata;
wire empty;
wire full;
// 例化模块 - 省略
sync_fifo u_sysc_fifo(
.fifo_clk (fifo_clk ) ,
.fifo_rst_n (fifo_rst_n) ,
.read_en (read_en ) ,
.write_en (write_en ) ,
.w_data (w_data ) ,
.r_data (r_data ) ,
.empty (empty ) ,
.full (full )
);
initial begin
fifo_rst_n = 1;
fifo_clk = 0;
#1 fifo_rst_n = 0;
#5 fifo_rst_n = 1;
end
always #20 fifo_clk = ~fifo_clk;
initial begin
write_en = 0;
#1 write_en = 1;
end
initial begin
read_en = 0;
#650 read_en = 1;
write_en = 0;
end
initial begin
w_data = 8'h0;
#40 w_data = 8'h1;
#40 w_data = 8'h2;
#40 w_data = 8'h3;
#40 w_data = 8'h4;
#40 w_data = 8'h5;
#40 w_data = 8'h6;
#40 w_data = 8'h7;
#40 w_data = 8'h9;
#40 w_data = 8'ha;
#40 w_data = 8'hb;
#40 w_data = 8'hc;
#40 w_data = 8'hd;
#40 w_data = 8'he;
#40 w_data = 8'hf;
#200 $finish;
end
initial begin
$vcdpluson();
end
endmodule
FIFO设计的更多相关文章
- FPGA Asynchronous FIFO设计思路(2)
FPGA Asynchronous FIFO设计思路(2) 首先讨论格雷码的编码方式: 先看4bit的格雷码,当MSB为0时,正向计数,当MSB为1时,即指针已经走过一遍了,最高位翻转,此时的格雷码是 ...
- FPGA Asynchronous FIFO设计思路
FPGA Asynchronous FIFO设计思路 将一个多位宽,且在不停变化的数据从一个时钟域传递到另一个时钟域是比较困难的. 同步FIFO的指针比较好确定,当FIFO counter达到上限值时 ...
- FIFO设计中的深度计算【zz】
FIFO设计中的深度计算: 写时钟频率 w_clk, 读时钟频率 r_clk, 写时钟周期里,每B个时钟周期会有A个数据写入FIFO: 读时钟周期里,每Y个时钟周期会有X个数据读出FIFO: 则,FI ...
- 基于FPGA的异步FIFO设计
今天要介绍的异步FIFO,可以有不同的读写时钟,即不同的时钟域.由于异步FIFO没有外部地址端口,因此内部采用读写指针并顺序读写,即先写进FIFO的数据先读取(简称先进先出).这里的读写指针是异步的, ...
- FIFO设计思考之一
不管同步FIFO还是异步FIFO,设计难点是full/empty状态flag的正确性. 要保证任何情况 FULL时NO WRITE,EMPTY时NO READ.overflow / underflow ...
- 异步FIFO设计
参考http://www.cnblogs.com/BitArt/archive/2013/04/10/3010073.html http://blog.sina.com.cn/s/blog_6d30f ...
- 异步fifo的设计
本文首先对异步 FIFO 设计的重点难点进行分析 最后给出详细代码 一.FIFO简单讲解 FIFO的本质是RAM, 先进先出 重要参数:fifo深度(简单来说就是需要存多少个数据) ...
- 同步fifo的verilogHDL设计实例
原创 设计一个fifo,输入16bit,输出16bit的data,寻址宽度5bit,有空满标志. top 层如下所示: /* date : 2014/10/14 version : modelsim ...
- Verilog设计异步FIFO
转自http://ninghechuan.com 异步FIFO有两个异步时钟,一个端口写入数据,一个端口读出数据.通常被用于数据的跨时钟域的传输. 同步FIFO的设计.一个时钟控制一个计数器,计数器增 ...
- 异步fifo的设计(FPGA)
本文首先对异步 FIFO 设计的重点难点进行分析 最后给出详细代码 一.FIFO简单讲解 FIFO的本质是RAM, 先进先出 重要参数:fifo深度(简单来说就是需要存多少个数据) ...
随机推荐
- X2加密的PcbDoc类型导出内容有误,不加密的PcbDoc导出的表格正常
出现该类问题说明读取PcbDoc文件文件出了文件,加密类型添加tmp类型即可
- 好玩、有趣的 Linux 命令学习神器 kmdr!
大家好,我是你们的民工哥. 所有学习Linux系统的初学者都知道,入门时除了简单的系统知识需要了解之外,其次,最重要的就是学习与理解Linux命令的用法与其应用场景. 所以,大家也会遇到这样的情况,不 ...
- 0X01 位运算笔记
位运算,经常可以用来处理一些数学或动归方面的问题,通常会在数据范围较小的情况下使用. 为方便起见,一个 \(\mathrm{n}\) 位二进制数从右到左分别为第 \(\mathrm{0 \sim n ...
- MIGO新增页签增强
1.文档说明 本方法是将新增字段,展示在MIGO的新增页签中,并保存到自建表. 新增页签的方法,和采购订单新增页签的方法原理基本一致,都是需要创建函数组,并实现相应方法和屏幕,并在增强中调用该函数组, ...
- 【Android】深入Binder拦截
☞ Github ☜ ☞ Gitee ☜ 说明 Binder作为Android系统跨进程通信的核心机制.网上也有很多深度讲解该机制的文章,如: Android跨进程通信详解Binder机制原理 And ...
- [西湖论剑2023-Misc] 复现
MISC mp3 题目 我的解答: 010发现mp3藏有png图片 卡里分离得到图片 foremost cipher.mp3 zsteg发现里面有压缩包 提取出来 zsteg -e b1,r,lsb, ...
- 文心一言 VS 讯飞星火 VS chatgpt (39)-- 算法导论5.4 3题
三.在生日悖论的分析中,要求各人生日彼此独立是否很重要?或者,是否只要两两成对独立就足够了?证明你的答案. 文心一言: 在生日悖论的分析中,要求各人生日彼此独立是非常重要的.这是因为,如果各人生日不是 ...
- 新版以太坊Ethereum库ethersV5.0配合后端Golang1.18实时链接区块链钱包(Metamask/Okc)以及验签操作
区块链去中心化思想无处不在,比如最近使用个体抗原自检替代大规模的中心化核酸检测,就是去中心化思想的落地实践,避免了大规模聚集导致的交叉感染,提高了检测效率,本次我们使用Ethereum最新的ether ...
- C++篇:第二章_运算符_知识点大全
C++篇为本人学C++时所做笔记(特别是疑难杂点),全是硬货,虽然看着枯燥但会让你收益颇丰,可用作学习C++的一大利器 二.运算符 (一)运算符本身运用限制 %取余运算符要求运算数必须是整型,浮点数取 ...
- 云图说|云数据库MySQL内核小版本升级全攻略
摘要:华为云数据库MySQL支持自动或手动升级内核小版本,内核小版本的升级涉及性能提升.新功能或问题修复等. 华为云有新的内核小版本发布时,您可以在"实例管理"页面看到内核小版本升 ...