Tire树 学习笔记
定义与基本求法
定义
又称字典树,用边表示字母,从根节点到树上某一节点路径形成一个字符串。
例如 \(charlie:\)
基本求法
廷显然的,往树中存就行了,查询也是显然的,通过一道例题来理解吧:
#include<bits/stdc++.h>
#define int long long
#define endl '\n'
using namespace std;
const int N=5e5+10,P=1e9+7;
template<typename Tp> inline void read(Tp&x)
{
x=0;register bool z=1;
register char c=getchar();
for(;c<'0'||c>'9';c=getchar()) if(c=='-') z=0;
for(;'0'<=c&&c<='9';c=getchar()) x=(x<<1)+(x<<3)+(c^48);
x=(z?x:~x+1);
}
char s[N];
int n,m,t[N][30],v[N],tot=1;
void Tire(char s[])
{
int r=1,l=strlen(s+1);
for(int i=1;i<=l;i++)
{
int c=s[i]-'a';
if(!t[r][c]) t[r][c]=++tot;
r=t[r][c];
}
v[r]=1;
}
void ask(char s[])
{
int r=1,l=strlen(s+1);
for(int i=1;i<=l;i++)
{
int c=s[i]-'a';
r=t[r][c];
if(!r) break;
}
if(v[r]==1)
{
cout<<"OK"<<endl;
v[r]=2;
}
else if(v[r]==2)
cout<<"REPEAT"<<endl;
else cout<<"WRONG"<<endl;
}
signed main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
read(n);
for(int i=1;i<=n;i++)
cin>>s+1,
Tire(s);
read(m);
for(int i=1;i<=m;i++)
cin>>s+1,
ask(s);
}
\(t\) 数组存的现节点是编号,第一维存的是根节点编号,第二维是边权。
查询时,遇到该字符对应编号为 \(0\) ,说明这个字符串不存在与字典树中。
例题
题面:
给定 \(n\) 个字符串,判断是否存在两个字符串 \(s,t\) ,使 \(s\) 是 \(t\) 的前缀。
解法:
多测,\(n^2\) 匹配—— \(Hash×\)
将每一组存到字典树中,同时查询是否有前缀等于之前的串即可。
可以定义一个新的数组 \(f_p\) 用于判断,判断字符串 \(s\) 时,只要出现 \(f_p=1\) 就说明有字符串与其匹配了,当然,存的时候,存完另 \(f_p=1\) 。
结合代码理解。
代码如下:
#include<bits/stdc++.h>
#define int unsigned long long
#define endl '\n'
using namespace std;
const int N=1e6+10,P=1e9+7;
template<typename Tp> inline void read(Tp&x)
{
x=0;register bool z=1;
register char c=getchar();
for(;c<'0'||c>'9';c=getchar()) if(c=='-') z=0;
for(;'0'<=c&&c<='9';c=getchar()) x=(x<<1)+(x<<3)+(c^48);
x=(z?x:~x+1);
}
int T,n,t[N][20],tot=1;
char s[N];
bool f[N];
void Tire(char s[])
{
int p=1,l=strlen(s+1);
for(int i=1;i<=l;i++)
{
int c=s[i]-'0';
if(!t[p][c]) t[p][c]=++tot;
p=t[p][c];
}
f[p]=1;
}
bool find(char s[])
{
int p=1,l=strlen(s+1);
for(int i=1;i<=l;i++)
{
int c=s[i]-'0';
if(!t[p][c]) return 0;
p=t[p][c];
if(f[p]) return 1;
}
return 1;
}
signed main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
read(T);
while(T--)
{
memset(f,0,sizeof(f));
memset(t,0,sizeof(t));
tot=1;
bool ans=0;
read(n);
for(int i=1;i<=n;i++)
{
cin>>s+1;
if(find(s)) ans=1;
Tire(s);
}
if(!ans) cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
}
\(01Tire\)
定义与基本求法:
定义
字符集只有 \(0||1\) 的 \(Tire\) 数,主要用来解决有关异或值的问题。
基本求法:
异或有着安慰考虑的性质,每一位贡献是分开的,这与 \(Tire\) 树用不同深度存不同位定性质是吻合的。
如果要最大化异或值,一定先最大化其最高位,如果用 \(Tire\) 树从高到低来做,正好吻合了这个贪心思想。
根据例题来理解吧。
例题
\(The XOR Largest Pair\)
题面:
给定 \(n\) 个整数 \(a_i\sim a_n\) ,在其中选出两个进行异或运算,求可以得到的最大结果。
解法:
\(n\) 足够大,暴力不要想。
将这 \(n\) 个数转换成二进制,存到 \(Tire\) 树里。
再取这 \(n\) 个树,在 \(Tire\) 上跑一边,尽可能的向与其二进制位不同的方向。
此处体现了贪心的思想,因为二进制下 \(1aaaa>0bbbb\) 始终成立,高位优一定全局优。
代码如下:
#include<bits/stdc++.h>
#define int long long
#define endl '\n'
using namespace std;
const int N=3e6+10,P=1e9+7;
template<typename Tp> inline void read(Tp&x)
{
x=0;register bool z=1;
register char c=getchar();
for(;c<'0'||c>'9';c=getchar()) if(c=='-') z=0;
for(;'0'<=c&&c<='9';c=getchar()) x=(x<<1)+(x<<3)+(c^48);
x=(z?x:~x+1);
}
int n,a[N],tot,t[N][2],ans;
void Tire(int x)
{
int p=0;
for(int i=31;i>=0;i--)
{
int l=(x>>i)&1;
if(!t[p][l]) t[p][l]=++tot;
p=t[p][l];
}
}
int find(int x)
{
int p=0,sum=0;
for(int i=31;i>=0;i--)
{
int l=(x>>i)&1;
if(t[p][l^1])
p=t[p][l^1],
sum=sum<<1|1;//二进制运算
else
p=t[p][l],sum=sum<<1;//同上
}
return sum;
}
signed main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
read(n);
for(int i=1;i<=n;i++)
read(a[i]),
Tire(a[i]);
for(int i=1;i<=n;i++)
ans=max(ans,find(a[i]));
cout<<ans;
}
位运算方向注意不要写反了。
\(The XOR-longest Path\)
题面:
给定一棵 \(n\) 个节点的带权树,求书上最长的异或和路径。
解法:
首先了解异或的一个重要性质——自反性:
\(x\oplus x=0\)
所以一个元素,若对其进行了重复偶数次的重复,则视作没有异或。
∴ \(path(x,y)=path(x,lca)\oplus path(lca,y)=path(x,root)\oplus path(root,y)\)
故此求出每个点到根节点的异或和 \(d_i\) ,将 \(d_i\) 存到 \(Tire\) 中,问题就转化为了上一道题。
至于如何求每个节点到根节点的异或和,可以用 \(dfs\) 解决。
总结
对于 \(Tire\) 树此处涉及并不多,也还没有讲,上网上自己找的。
直接使用 \(Tire\) 树的问题还是相对容易的,也很好理解,\(01Tire\) 也是直接使用 \(Tire\) 的一个应用了,虽然只能解决异或问题。
而此处对其进行整理主要为了为后面的 \(AC\) 自动机等知识点做准备。
由此看,\(Tire\) 树还是很重要的,要牢牢掌握。
Tire树 学习笔记的更多相关文章
- zkw线段树学习笔记
zkw线段树学习笔记 今天模拟赛线段树被卡常了,由于我自带常数 \(buff\),所以学了下zkw线段树. 平常的线段树无论是修改还是查询,都是从根开始递归找到区间的,而zkw线段树直接从叶子结点开始 ...
- 仙人掌&圆方树学习笔记
仙人掌&圆方树学习笔记 1.仙人掌 圆方树用来干啥? --处理仙人掌的问题. 仙人掌是啥? (图片来自于\(BZOJ1023\)) --也就是任意一条边只会出现在一个环里面. 当然,如果你的图 ...
- 线段树学习笔记(基础&进阶)(一) | P3372 【模板】线段树 1 题解
什么是线段树 线段树是一棵二叉树,每个结点存储需维护的信息,一般用于处理区间最值.区间和等问题. 线段树的用处 对编号连续的一些点进行修改或者统计操作,修改和统计的复杂度都是 O(log n). 基础 ...
- Treap-平衡树学习笔记
平衡树-Treap学习笔记 最近刚学了Treap 发现这种数据结构真的是--妙啊妙啊~~ 咳咳.... 所以发一发博客,也是为了加深蒟蒻自己的理解 顺便帮助一下各位小伙伴们 切入正题 Treap的结构 ...
- JSOI2008 Blue Mary开公司 | 李超线段树学习笔记
题目链接:戳我 这相当于是一个李超线段树的模板qwqwq,题解就不多说了. 代码如下: #include<iostream> #include<cstdio> #include ...
- Splay伸展树学习笔记
Splay伸展树 有篇Splay入门必看文章 —— CSDN链接 经典引文 空间效率:O(n) 时间效率:O(log n)插入.查找.删除 创造者:Daniel Sleator 和 Robert Ta ...
- CART分类与回归树 学习笔记
CART:Classification and regression tree,分类与回归树.(是二叉树) CART是决策树的一种,主要由特征选择,树的生成和剪枝三部分组成.它主要用来处理分类和回归问 ...
- B和B+树学习笔记
二叉树 如果数据都在内存中,我们就用平衡二叉查找树即可,这样效率最高. 在前面的文章中我使用过红黑树(大致平衡的二叉查找树),500万节点时,搜索的深度可以达到50,也就是需要50次指针操作才能获取到 ...
- Trie树 字典树-学习笔记
字符串--蒟蒻永远的阴影 对于字符串匹配 KMP很好的解决了以一个文本串匹配一个模板串的问题 但如果模板串有多个呢 这是KMP不再适用 我们引入一个新的数据结构--字典树 (当然又有像AC自动机这样更 ...
- 一篇自己都看不懂的点分治&点分树学习笔记
淀粉质点分治可真是个好东西 Part A.点分治 众所周知,树上分治算法有$3$种:点分治.边分治.链分治(最后一个似乎就是树链剖分),它们名字的不同是由于分治方式的不同的.点分治,顾名思义,每一次选 ...
随机推荐
- [kuangbin] 专题7 线段树 题解 + 总结
[kuangbin] 专题7 线段树 题解 + 总结 kuangbin带你飞:点击进入新世界 kuangbin专题十二 基础DP1 题解+总结:https://www.cnblogs.com/RioT ...
- AcWing 第 1 场周赛补题记录(A~C)
比赛链接:Here AcWing 3577. 选择数字 排序,然后选取两个数组的最大值 void solve() { int n; cin >> n; vector<int>a ...
- 使用 Serverless Devs 插件快速部署前端应用
作者| 邓超 Serverless Devs 开源贡献者 背景 我们在 上文 [Aliyun] [FC] 如何使用 @serverless-devs/s 部署静态网站到函数计算 中,详细的介绍了如何通 ...
- 简单剖析Hashmap
剖析 Java Hashmap 源码 在 Java 的集合框架中,HashMap 是一颗璀璨的明珠.通过深入挖掘其源码,我们将揭开 HashMap 的神秘面纱,理解其底层原理.扩容机制和数据结构. 1 ...
- 【收集】Tool
序 链接 备注 1 WinMerge - You will see the difference- 开源windows比对工具 2 AykutSarac/jsoncrack.com: Seamless ...
- [javaee] - tomcat 下载和配置环境变量
以tomcat9为例 第一步 :下载到本地并解压文件 解压后: 第二步:配置环境变量,在系统变量中添加 CATALINE_HOME ,路径为tomcat的目录 启动tomcat , 启动之后不要关 ...
- Chrony 的学习与使用
Chrony 的学习与使用 背景 之前捯饬 ntp 发现很麻烦, 经常容易弄错了. 昨天处理文件精确时间时 想到了时间同步. 发现只有自己总结的ntpdate 但是还没有 chronyd相关的总结 本 ...
- [转帖]IPv6地址解析库,窥探IPv6地址中包含的信息
https://zhuanlan.zhihu.com/p/479028720 大家好,我是明说网络的小明同学. 今天和大家介绍一个IPv6 地址解析库IPv6 address Parser :http ...
- [转帖]关于iostat的问题,svctm数据不可信
使用FIO对磁盘进行压力测试,使用1个线程对磁盘进行随机读,设置单次read的数据块分别为128KB和1M,数据如下: (1)单次IO数据块为128KB (2)单次IO数据块为1M 从上面的数据可以看 ...
- [转帖]Linux-文本处理三剑客awk详解+企业真实案例(变量、正则、条件判断、循环、数组、分析日志)
https://developer.aliyun.com/article/885607?spm=a2c6h.24874632.expert-profile.313.7c46cfe9h5DxWK 简介: ...