vue3编译优化之“静态提升”
前言
在上一篇 vue3早已具备抛弃虚拟DOM的能力了文章中讲了对于动态节点,vue做的优化是将这些动态节点收集起来,然后当响应式变量修改后进行靶向更新。那么vue对静态节点有没有做什么优化呢?答案是:当然有,对于静态节点会进行“静态提升”。这篇文章我们来看看vue是如何进行静态提升的。
什么是静态提升?
我们先来看一个demo,代码如下:
<template>
<div>
<h1>title</h1>
<p>{{ msg }}</p>
<button @click="handleChange">change msg</button>
</div>
</template>
<script setup lang="ts">
import { ref } from "vue";
const msg = ref("hello");
function handleChange() {
msg.value = "world";
}
</script>
这个demo代码很简单,其中的h1标签就是我们说的静态节点,p标签就是动态节点。点击button按钮会将响应式msg
变量的值更新,然后会执行render函数将msg
变量的最新值"world"渲染到p标签中。
我们先来看看未开启静态提升之前生成的render函数是什么样的:
由于在vite项目中启动的vue都是开启了静态提升,所以我们需要在 Vue 3 Template Explorer网站中看看未开启静态提升的render函数的样子(网站URL为: https://template-explorer.vuejs.org/ ),如下图将hoistStatic
这个选项取消勾选即可:
未开启静态提升生成的render函数如下:
import { createElementVNode as _createElementVNode, toDisplayString as _toDisplayString, openBlock as _openBlock, createElementBlock as _createElementBlock } from "vue"
export function render(_ctx, _cache, $props, $setup, $data, $options) {
return (_openBlock(), _createElementBlock("template", null, [
_createElementVNode("div", null, [
_createElementVNode("h1", null, "title"),
_createElementVNode("p", null, _toDisplayString(_ctx.msg), 1 /* TEXT */),
_createElementVNode("button", { onClick: _ctx.handleChange }, "change msg", 8 /* PROPS */, ["onClick"])
])
]))
}
每次响应式变量更新后都会执行render函数,每次执行render函数都会执行createElementVNode
方法生成h1标签的虚拟DOM。但是我们这个h1标签明明就是一个静态节点,根本就不需要每次执行render函数都去生成一次h1标签的虚拟DOM。
vue3对此做出的优化就是将“执行createElementVNode
方法生成h1标签虚拟DOM的代码”提取到render函数外面去,这样就只有初始化的时候才会去生成一次h1标签的虚拟DOM,也就是我们这篇文章中要讲的“静态提升”。开启静态提升后生成的render函数如下:
import { createElementVNode as _createElementVNode, toDisplayString as _toDisplayString, openBlock as _openBlock, createElementBlock as _createElementBlock } from "vue"
const _hoisted_1 = /*#__PURE__*/_createElementVNode("h1", null, "title", -1 /* HOISTED */)
export function render(_ctx, _cache, $props, $setup, $data, $options) {
return (_openBlock(), _createElementBlock("template", null, [
_createElementVNode("div", null, [
_hoisted_1,
_createElementVNode("p", null, _toDisplayString(_ctx.msg), 1 /* TEXT */),
_createElementVNode("button", {
onClick: _cache[0] || (_cache[0] = (...args) => (_ctx.handleChange && _ctx.handleChange(...args)))
}, "change msg")
])
]))
}
从上面可以看到生成h1标签虚拟DOM的createElementVNode
函数被提取到render函数外面去执行了,只有初始化时才会执行一次将生成的虚拟DOM赋值给_hoisted_1
变量。在render函数中直接使用_hoisted_1
变量即可,无需每次执行render函数都去生成h1标签的虚拟DOM,这就是我们这篇文章中要讲的“静态提升”。
我们接下来还是一样的套路通过debug的方式来带你搞清楚vue是如何实现静态提升的,注:本文使用的vue版本为3.4.19
如何实现静态提升
实现静态提升主要分为两个阶段:
transform
阶段遍历AST抽象语法树,将静态节点找出来进行标记和处理,然后将这些静态节点塞到根节点的hoists
数组中。generate
阶段遍历上一步在根节点存的hoists
数组,在render函数外去生成存储静态节点虚拟DOM的_hoisted_x
变量。然后在render函数中使用这些_hoisted_x
变量表示这些静态节点。
transform阶段
在我们这个场景中transform
函数简化后的代码如下:
function transform(root, options) {
// ...省略
if (options.hoistStatic) {
hoistStatic(root, context);
}
root.hoists = context.hoists;
}
从上面可以看到实现静态提升是执行了hoistStatic
函数,我们给hoistStatic
函数打个断点。让代码走进去看看hoistStatic
函数是什么样的,在我们这个场景中简化后的代码如下:
function hoistStatic(root, context) {
walk(root, context, true);
}
从上面可以看到这里依然不是具体实现的地方,接着将断点走进walk
函数。在我们这个场景中简化后的代码如下:
function walk(node, context, doNotHoistNode = false) {
const { children } = node;
for (let i = 0; i < children.length; i++) {
const child = children[i];
if (
child.type === NodeTypes.ELEMENT &&
child.tagType === ElementTypes.ELEMENT
) {
const constantType = doNotHoistNode
? ConstantTypes.NOT_CONSTANT
: getConstantType(child, context);
if (constantType > ConstantTypes.NOT_CONSTANT) {
if (constantType >= ConstantTypes.CAN_HOIST) {
child.codegenNode.patchFlag = PatchFlags.HOISTED + ` /* HOISTED */`;
child.codegenNode = context.hoist(child.codegenNode);
continue;
}
}
}
if (child.type === NodeTypes.ELEMENT) {
walk(child, context);
}
}
}
我们先在debug终端上面看看传入的第一个参数node
是什么样的,如下图:
从上面可以看到此时的node
为AST抽象语法树的根节点,树的结构和template
中的代码刚好对上。外层是div标签,div标签下面有h1、p、button三个标签。
我们接着来看walk
函数,简化后的walk
函数只剩下一个for循环遍历node.children
。在for循环里面主要有两块if语句:
第一块if语句的作用是实现静态提升
第二块if语句的作用是递归遍历整颗树。
我们来看第一块if语句中的条件,如下:
if (
child.type === NodeTypes.ELEMENT &&
child.tagType === ElementTypes.ELEMENT
)
在将这块if语句之前,我们先来了解一下这里的两个枚举。NodeTypes
和ElementTypes
NodeTypes
枚举
NodeTypes
表示AST抽象语法树中的所有node节点类型,枚举值如下:
enum NodeTypes {
ROOT, // 根节点
ELEMENT, // 元素节点,比如:div元素节点、Child组件节点
TEXT, // 文本节点
COMMENT, // 注释节点
SIMPLE_EXPRESSION, // 简单表达式节点,比如v-if="msg !== 'hello'"中的msg!== 'hello'
INTERPOLATION, // 双大括号节点,比如{{msg}}
ATTRIBUTE, // 属性节点,比如 title="我是title"
DIRECTIVE, // 指令节点,比如 v-if=""
// ...省略
}
看到这里有的小伙伴可能有疑问了,为什么AST抽象语法树中有这么多种节点类型呢?
我们来看一个例子你就明白了,如下:
<div v-if="msg !== 'hello'" title="我是title">msg为 {{ msg }}</div>
上面这段代码转换成AST抽象语法树后会生成很多node节点:
div
对应的是ELEMENT
元素节点v-if
对应的是DIRECTIVE
指令节点v-if
中的msg !== 'hello'
对应的是SIMPLE_EXPRESSION
简单表达式节点title
对应的是ATTRIBUTE
属性节点msg为
对应的是ELEMENT
元素节点{{ msg }}
对应的是INTERPOLATION
双大括号节点
ElementTypes
枚举
div元素节点、Child组件节点都是NodeTypes.ELEMENT
元素节点,那么如何区分是不是组件节点呢?就需要使用ElementTypes
枚举来区分了,如下:
enum ElementTypes {
ELEMENT, // html元素
COMPONENT, // 组件
SLOT, // 插槽
TEMPLATE, // 内置template元素
}
现在来看第一块if条件,你应该很容易看得懂了:
if (
child.type === NodeTypes.ELEMENT &&
child.tagType === ElementTypes.ELEMENT
)
如果当前节点是html元素节点,那么就满足if条件。
当前的node节点是最外层的div节点,当然满足这个if条件。
接着将断点走进if条件内,第一行代码如下:
const constantType = doNotHoistNode
? ConstantTypes.NOT_CONSTANT
: getConstantType(child, context);
在搞清楚这行代码之前先来了解一下ConstantTypes
枚举
ConstantTypes
枚举
我们来看看ConstantTypes
枚举,如下:
enum ConstantTypes {
NOT_CONSTANT = 0, // 不是常量
CAN_SKIP_PATCH, // 跳过patch函数
CAN_HOIST, // 可以静态提升
CAN_STRINGIFY, // 可以预字符串化
}
ConstantTypes
枚举的作用就是用来标记静态节点的4种等级状态,高等级的状态拥有低等级状态的所有能力。比如:
NOT_CONSTANT
:表示当前节点不是静态节点。比如下面这个p标签使用了msg
响应式变量:
<p>{{ msg }}</p>
const msg = ref("hello");
CAN_SKIP_PATCH
:表示当前节点在重新执行render函数时可以跳过patch
函数。比如下面这个p标签虽然使用了变量name
,但是name
是一个常量值。所以这个p标签其实是一个静态节点,但是由于使用了name
变量,所以不能提升到render函数外面去。
<p>{{ name }}</p>
const name = "name";
CAN_HOIST
:表示当前静态节点可以被静态提升,当然每次执行render函数时也无需执行patch
函数。demo如下:
<h1>title</h1>
CAN_STRINGIFY
:表示当前静态节点可以被预字符串化,下一篇文章会专门讲预字符串化。
从debug终端中可以看到此时doNotHoistNode
变量的值为true,所以constantType
变量的值为ConstantTypes.NOT_CONSTANT
。
getConstantType
函数的作用是根据当前节点以及其子节点拿到静态节点的constantType
。
我们接着来看后面的代码,如下:
if (constantType > ConstantTypes.NOT_CONSTANT) {
if (constantType >= ConstantTypes.CAN_HOIST) {
child.codegenNode.patchFlag = PatchFlags.HOISTED + ` /* HOISTED */`;
child.codegenNode = context.hoist(child.codegenNode);
continue;
}
}
前面我们已经讲过了,当前div节点的constantType
的值为ConstantTypes.NOT_CONSTANT
,所以这个if语句条件不通过。
我们接着看walk
函数中的最后一块代码,如下:
if (child.type === NodeTypes.ELEMENT) {
walk(child, context);
}
前面我们已经讲过了,当前child节点是div标签,所以当然满足这个if条件。将子节点div作为参数,递归调用walk
函数。
我们再次将断点走进walk
函数,和上一次执行walk
函数不同的是,上一次walk
函数的参数为root根节点,这一次参数是div节点。
同样的在walk
函数内先使用for循环遍历div节点的子节点,我们先来看第一个子节点h1标签,也就是需要静态提升的节点。很明显h1标签是满足第一个if条件语句的:
if (
child.type === NodeTypes.ELEMENT &&
child.tagType === ElementTypes.ELEMENT
)
在debug终端中来看看h1标签的constantType
的值,如下:
从上图中可以看到h1标签的constantType
值为3,也就是ConstantTypes.CAN_STRINGIFY
。表明h1标签是最高等级的预字符串,当然也能静态提升。
h1标签的constantType
当然就能满足下面这个if条件:
if (constantType > ConstantTypes.NOT_CONSTANT) {
if (constantType >= ConstantTypes.CAN_HOIST) {
child.codegenNode.patchFlag = PatchFlags.HOISTED + ` /* HOISTED */`;
child.codegenNode = context.hoist(child.codegenNode);
continue;
}
}
值得一提的是上面代码中的codegenNode
属性就是用于生成对应node节点的render函数。
然后以codegenNode
属性作为参数执行context.hoist
函数,将其返回值赋值给节点的codegenNode
属性。如下:
child.codegenNode = context.hoist(child.codegenNode);
上面这行代码的作用其实就是将原本生成render函数的codegenNode
属性替换成用于静态提升的codegenNode
属性。
context.hoist
方法
将断点走进context.hoist
方法,简化后的代码如下:
function hoist(exp) {
context.hoists.push(exp);
const identifier = createSimpleExpression(
`_hoisted_${context.hoists.length}`,
false,
exp.loc,
ConstantTypes.CAN_HOIST
);
identifier.hoisted = exp;
return identifier;
}
我们先在debug终端看看传入的codegenNode
属性。如下图:
从上图中可以看到此时的codegenNode
属性对应的就是h1标签,codegenNode.children
对应的就是h1标签的title文本节点。codegenNode
属性的作用就是用于生成h1标签的render函数。
在hoist
函数中首先执行 context.hoists.push(exp)
将h1标签的codegenNode
属性push到context.hoists
数组中。context.hoists
是一个数组,数组中存的是AST抽象语法树中所有需要被静态提升的所有node节点的codegenNode
属性。
接着就是执行createSimpleExpression
函数生成一个新的codegenNode
属性,我们来看传入的第一个参数:
`_hoisted_${context.hoists.length}`
由于这里处理的是第一个需要静态提升的静态节点,所以第一个参数的值_hoisted_1
。如果处理的是第二个需要静态提升的静态节点,其值为_hoisted_2
,依次类推。
接着将断点走进createSimpleExpression
函数中,代码如下:
function createSimpleExpression(
content,
isStatic = false,
loc = locStub,
constType = ConstantTypes.NOT_CONSTANT
) {
return {
type: NodeTypes.SIMPLE_EXPRESSION,
loc,
content,
isStatic,
constType: isStatic ? ConstantTypes.CAN_STRINGIFY : constType,
};
}
这个函数的作用很简单,根据传入的内容生成一个简单表达式节点。我们这里传入的内容就是_hoisted_1
。
表达式节点我们前面讲过了,比如:v-if="msg !== 'hello'"
中的msg!== 'hello'
就是一个简单的表达式。
同理上面的_hoisted_1
表示的是使用了一个变量名为_hoisted_1
的表达式。
我们在debug终端上面看看hoist
函数返回值,也就是h1标签新的codegenNode
属性。如下图:
此时的codegenNode
属性已经变成了一个简单表达式节点,表达式的内容为:_hoisted_1
。后续执行generate
生成render函数时,在render函数中h1标签就变成了表达式:_hoisted_1
。
最后再执行transform
函数中的root.hoists = context.hoists
,将context
上下文中存的hoists
属性数组赋值给根节点的hoists
属性数组,后面在generate
生成render函数时会用。
至此transform
阶段已经完成了,主要做了两件事:
将h1静态节点找出来,将该节点生成render函数的
codegenNode
属性push到根节点的hoists
属性数组中,后面generate
生成render函数时会用。将上一步h1静态节点的
codegenNode
属性替换为一个简单表达式,表达式为:_hoisted_1
。
generate
阶段
在generate
阶段主要分为两部分:
将原本render函数内调用
createElementVNode
生成h1标签虚拟DOM的代码,提到render函数外面去执行,赋值给全局变量_hoisted_1
。在render函数内直接使用
_hoisted_1
变量即可。
如下图:
生成render函数外面的_hoisted_1
变量
经过transform
阶段的处理,根节点的hoists
属性数组中存了所有需要静态提升的静态节点。我们先来看如何处理这些静态节点,生成h1标签对应的_hoisted_1
变量的。代码如下:
genHoists(ast.hoists, context);
将根节点的hoists
属性数组传入给genHoists
函数,将断点走进genHoists
函数,在我们这个场景中简化后的代码如下:
function genHoists(hoists, context) {
const { push, newline } = context;
newline();
for (let i = 0; i < hoists.length; i++) {
const exp = hoists[i];
if (exp) {
push(`const _hoisted_${i + 1} = ${``}`);
genNode(exp, context);
newline();
}
}
}
generate
部分的代码会在后面文章中逐行分析,这篇文章就不细看到每个函数了。简单解释一下genHoists
函数中使用到的那些方法的作用。
context.code
属性:此时的render函数字符串,可以在debug终端看一下执行每个函数后render函数字符串是什么样的。newline
方法:向当前的render函数字符串中插入换行符。push
方法:向当前的render函数字符串中插入字符串code。genNode
函数:在transform
阶段给会每个node节点生成codegenNode
属性,在genNode
函数中会使用codegenNode
属性生成对应node节点的render函数代码。
在刚刚进入genHoists
函数,我们在debug终端使用context.code
看看此时的render函数字符串是什么样的,如下图:
从上图中可以看到此时的render函数code字符串只有一行import vue的代码。
然后执行newline
方法向render函数code字符串中插入一个换行符。
接着遍历在transform
阶段收集的需要静态提升的节点集合,也就是hoists
数组。在debug终端来看看这个hoists
数组,如下图:
从上图中可以看到在hoists
数组中只有一个h1标签需要静态提升。
在for循环中会先执行一句push
方法,如下:
push(`const _hoisted_${i + 1} = ${``}`)
这行代码的意思是插入一个名为_hoisted_1
的const变量,此时该变量的值还是空字符串。在debug终端使用context.code
看看执行push
方法后的render函数字符串是什么样的,如下图:
从上图中可以看到_hoisted_1
全局变量的定义已经生成了,值还没生成。
接着就是执行genNode(exp, context)
函数生成_hoisted_1
全局变量的值,同理在debug终端看看执行genNode
函数后的render函数字符串是什么样的,如下图:
从上面可以看到render函数外面已经定义了一个_hoisted_1
变量,变量的值为调用createElementVNode
生成h1标签虚拟DOM。
生成render函数中return的内容
在generate
中同样也是调用genNode
函数生成render函数中return的内容,代码如下:
genNode(ast.codegenNode, context);
这里传入的参数ast.codegenNode
是根节点的codegenNode
属性,在genNode
函数中会从根节点开始递归遍历整颗AST抽象语法树,为每个节点生成自己的createElementVNode
函数,执行createElementVNode
函数会生成这些节点的虚拟DOM。
我们先来看看传入的第一个参数ast.codegenNode
,也就是根节点的codegenNode
属性。如下图:
从上图中可以看到静态节点h1标签已经变成了一个名为_hoisted_1
的变量,而使用了msg
变量的动态节点依然还是p标签。
我们再来看看执行这个genNode
函数之前render函数字符串是什么样的,如下图:
从上图中可以看到此时的render函数字符串还没生成return中的内容。
执行genNode
函数后,来看看此时的render函数字符串是什么样的,如下图:
从上图中可以看到,在生成的render函数中h1标签静态节点已经变成了_hoisted_1
变量,_hoisted_1
变量中存的是静态节点h1的虚拟DOM,所以每次页面更新重新执行render函数时就不会每次都去生成一遍静态节点h1的虚拟DOM。
总结
整个静态提升的流程图如下:
整个流程主要分为两个阶段:
在
transform
阶段中:将h1静态节点找出来,将静态节点的
codegenNode
属性push到根节点的hoists
属性数组中。将h1静态节点的
codegenNode
属性替换为一个简单表达式节点,表达式为:_hoisted_1
。
在
generate
阶段中:在render函数外面生成一个名为
_hoisted_1
的全局变量,这个变量中存的是h1标签的虚拟DOM。在render函数内直接使用
_hoisted_1
变量就可以表示这个h1标签。
关注(图1)公众号:【前端欧阳】,解锁我更多vue原理文章。
加我(图2)微信回复「666」,免费领取欧阳研究vue源码过程中收集的源码资料,欧阳写文章有时也会参考这些资料。同时让你的朋友圈多一位对vue有深入理解的人。
vue3编译优化之“静态提升”的更多相关文章
- QtCreator开启-O编译优化的方式
首先,编译优化必须是在Release模式下进行,保证程序没有任何bug的条件下进行执行.编译优化能极大提升程序的运行效率,级别越高速度越快,但是对代码健壮性要求也越高! 选择编译release模式,在 ...
- 微信团队分享:极致优化,iOS版微信编译速度3倍提升的实践总结
1.引言 岁月真是个养猪场,这几年,人胖了,微信代码也翻了. 记得 14 年转岗来微信时,用自己笔记本编译微信工程才十来分钟.如今用公司配的 17 年款 27-inch iMac 编译要接近半小时:偶 ...
- GCC 编译优化指南(转)
GCC 编译优化指南(转) http://www.jinbuguo.com/linux/optimize_guide.html 作者:金步国 版权声明 本文作者是一位开源理念的坚定支持者,所以本文虽然 ...
- GCC 编译优化指南
转自: http://www.jinbuguo.com/linux/optimize_guide.html GCC 编译优化指南 作者:金步国[www.jinbuguo.com] 版权声明 本文作者是 ...
- GCC编译优化指南【作者:金步国】
GCC编译优化指南[作者:金步国] GCC编译优化指南 作者:金步国 版权声明 本文作者是一位自由软件爱好者,所以本文虽然不是软件,但是本着 GPL 的精神发布.任何人都可以自由使用.转载.复制和再分 ...
- GCC 编译优化指南【转】
转自:http://www.jinbuguo.com/linux/optimize_guide.html 版权声明 本文作者是一位开源理念的坚定支持者,所以本文虽然不是软件,但是遵照开源的精神发布. ...
- JVM编译优化
在部分的商用虚拟机中,Java 程序最初是通过解释器(Interpreter )进行解释执行的,当虚拟机发现某个方法或代码块的运行特别频繁的时候,就会把这些代码认定为“热点代码”.为了提高热点代码的执 ...
- JVM性能优化系列-(6) 晚期编译优化
6. 晚期编译优化 晚期编译优化主要是在运行时做的一些优化手段. 6.1 JIT编译器 在部分的商用虚拟机中,java程序最初是通过解释器(Interpreter) 进行解释执行的,当虚拟机发现某个方 ...
- 蒲公英 · JELLY技术周刊 Vol.20: Vue3 极致优化——分析 Vue3 Compiler 告诉你为什么这么快
蒲公英 · JELLY技术周刊 Vol.20 性能优化是一条无尽的路,我们总是可以找到各种途径去提升体验,不论是响应时间还是按需加载,亦或是根据框架或者组件有针对性的优化都会是不错的方法.如果你在使用 ...
- 90% 的 Java 程序员都说不上来的为何 Java 代码越执行越快(1)- JIT编译优化
麻烦大家帮我投一票哈,谢谢 经常听到 Java 性能不如 C/C++ 的言论,也经常听说 Java 程序需要预热,那么其中主要原因是啥呢? 面试的时候谈到 JVM,也有很多面试官喜欢问,为啥 Java ...
随机推荐
- #树的直径#洛谷 3174 [HAOI2009]毛毛虫
题目 分析 类似于树的直径,只是点权变成了出度-1, 注意减1之后会漏掉两个端点要加回去,当\(n=1\)时特判 代码 #include <cstdio> #include <cct ...
- 2023 OpenHarmony年度运营报告
- OpenHarmony社区运营报告(2023年4月)
本月快讯 • 2023年4月9日,OpenAtom OpenHarmony(以下简称"OpenHarmony")3.2 Release新版本发布.相比一年前的OpenHarmo ...
- OpenHarmony社区运营报告(2022年12月)
本月快讯 • 本月新增22款产品通过兼容性测评,累计220款产品通过兼容性测评. • 12月28日,OpenAtom OpenHarmony(以下简称"OpenHarmony")凭 ...
- 本周四晚19:00知识赋能第3期直播丨OpenHarmony智能家居项目之控制面板功能实现
OpenAtom OpenHarmony(以下简称"OpenHarmony")开源开发者成长计划项目自 2021 年 10 月 24 日上线以来,在开发者中引发高度关注. 成长计划 ...
- Java 构造函数与修饰符详解:初始化对象与控制权限
Java 构造函数 Java 构造函数 是一种特殊的类方法,用于在创建对象时初始化对象的属性.它与类名相同,并且没有返回值类型. 构造函数的作用: 为对象的属性设置初始值 执行必要的初始化操作 提供创 ...
- pytorch,numpy两种方法实现nms类间+类内
类间:也就是不同类之间也进行nms 类内:就是只把同类的bboxes进行nms numpy实现 nms类间+类内: import numpy as np # 类间nms def nms(bboxes, ...
- hibernate4升级5带来的一些参数变化
public String hqlToHibernate5(String hql) { String[] tmp = hql.split(" "); String hqlTmp = ...
- 力扣1773(java&python)-统计匹配检索规则的物品数量(简单)
题目: 给你一个数组 items ,其中 items[i] = [typei, colori, namei] ,描述第 i 件物品的类型.颜色以及名称. 另给你一条由两个字符串 ruleKey 和 r ...
- API 开发的后盾:平台工程提供强力动态支持
过去几年,开发团队一直在发展传统的 DevOps.一些开发人员认为,CloudOps 或 DeploymentOps 等新实践的兴起将会导致回到孤岛问题.其他人则不愿意在承担所有其他职责之外构建.部署 ...