正题

题目链接:https://www.luogu.com.cn/problem/P6085


题目大意

\(n\)个点的一张无向图,有\(k\)条必走边,\(m\)条其他边,求从\(1\)出发经过必走边后回到起点的最短路径。

\(2\leq n\leq 13,0\leq k\leq 78,2\leq m\leq 200\)


解题思路

可以理解为在只包含必走边的图上加若干条其他边使得这张图存在欧拉回路。

欧拉回路要求所有点联通且度数为偶数,考虑状态压缩\(dp\),设三进制的状态。

\(f_s\),\(0\)表示没有联通,\(1\)表示度数为奇数,\(2\)表示度数为偶数。

然后先考虑加点进来的方式,也就是加进来的点我们只考虑不是必须的边的部分。而且使用这些点类似于一棵树的连接联通的点。(并不是连接成真正的树,而是如果使用了不必须的边的话只和一个点联通)

然后处理完后再考虑调整图的奇偶性,设\(g_S\)表示集合\(S\)中的点为奇数时调整为偶数的最小代价。

然后用\(f\)和\(g\)计算答案就好了。

时间复杂度\(O(3^nn^2)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N=14;
struct node{
int to,next;
}a[N*N];
int n,k,m,tot,ans,sta,st,ls[N],p[N],deg[N];
int dis[N][N],g[1<<N],f[1594323];
queue<int> q;
void addl(int x,int y){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;return;
}
int main()
{
memset(dis,0x3f,sizeof(dis));
memset(g,0x3f,sizeof(g));
memset(f,0x3f,sizeof(f));
scanf("%d%d",&n,&k);p[0]=1;dis[0][0]=0;
for(int i=1;i<=n;i++)p[i]=p[i-1]*3,dis[i][i]=0;
for(int i=1;i<=k;i++){
int x,y,w;
scanf("%d%d%d",&x,&y,&w);x--;y--;
addl(x,y);addl(y,x);dis[x][y]=dis[y][x]=min(dis[x][y],w);
deg[x]++;deg[y]++;sta^=(1<<x)^(1<<y);ans+=w;
}
scanf("%d",&m);
for(int i=1;i<=m;i++){
int x,y,w;
scanf("%d%d%d",&x,&y,&w);x--;y--;
dis[x][y]=dis[y][x]=min(dis[x][y],w);
}
for(int k=0;k<n;k++)
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
int MS=(1<<n);g[0]=0;
for(int s=0;s<MS;s++)
for(int i=0;i<n;i++){
if((s>>i)&1)continue;
for(int j=i+1;j<n;j++)
if(!((s>>j)&1)){
int z=s^(1<<i)^(1<<j);
g[s^z]=min(g[s^z],g[s]+dis[i][j]);
}
}
q.push(2);f[2]=0;
while(!q.empty()){
int s=q.front();q.pop();
for(int x=0;x<n;x++){
if(s/p[x]%3)continue;
int t=s+p[x]*2;
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(!(s/p[y]%3))continue;
if(f[t]>=g[MS])q.push(t);
f[t]=min(f[t],f[s]);
}
for(int y=0;y<n;y++){
if(!(s/p[y]%3))continue;
t=s+p[x];
if((t/p[y]%3)==2)t-=p[y];
else t+=p[y];
if(f[t]>=g[MS])q.push(t);
f[t]=min(f[t],f[s]+dis[x][y]);
}
}
}
int mins=g[MS];
for(int s=0;s<p[n];s++){
bool flag=0;int st=0;
for(int i=0;i<n;i++){
if((s/p[i]%3)==0&&deg[i]){flag=1;break;}
if(s/p[i]%3)st|=(1<<i)*(2-s/p[i]%3);
}
if(flag)continue;st^=sta;
mins=min(mins,f[s]+g[st]);
}
printf("%d\n",ans+mins);
return 0;
}

P6085-[JSOI2013]吃货JYY【状压dp,欧拉回路】的更多相关文章

  1. BZOJ 4479: [Jsoi2013]吃货jyy

    一句话题意:求必须包含某K条边的回路(回到1),使得总权值最小 转化为权值最小的联通的偶点 令F[i]表示联通状态为i的最小权值,(3^n状压)表示不在联通块内/奇点/偶点,连边时先不考虑必选的边的度 ...

  2. BZOJ4479 [JSOI2013] 吃货jyy 解题报告(三进制状态压缩+欧拉回路)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4479 Description [故事背景]作为JSOI的著名吃货,JYY的理想之一就是吃 ...

  3. BZOJ4479 : [Jsoi2013]吃货jyy

    若$k\leq 15$,那么可以设$d[i][S]$表示经过了$S$集合的边,现在位于$i$点的最短路. 可以用Dijkstra算法在$O(n^22^k)$时间内求出. 否则若$k>15$,那么 ...

  4. P1433 吃奶酪(洛谷)状压dp解法

    嗯?这题竟然是个绿题. 这个题真的不(很)难,我们只是不会计算2点之间的距离,他还给出了公式,这个就有点…… 我们直接套公式去求出需要的值,然后普通的状压dp就可以了. 是的状压dp. 这个题的数据加 ...

  5. [状压DP]吃奶酪

    吃 奶 酪 吃奶酪 吃奶酪 题目描述 房间里放着 n n n 块奶酪.一只小老鼠要把它们都吃掉,问至少要跑多少距离?老鼠一开始在 ( 0 , 0 ) (0,0) (0,0)点处. 输入 第一行有一个整 ...

  6. 洛谷 P1433 吃奶酪 状压DP

    题目描述 分析 比较简单的状压DP 我们设\(f[i][j]\)为当前的状态为\(i\)且当前所在的位置为\(j\)时走过的最小距离 因为老鼠的坐标为\((0,0)\),所以我们要预处理出\(f[1& ...

  7. 【BZOJ-1097】旅游景点atr SPFA + 状压DP

    1097: [POI2007]旅游景点atr Time Limit: 30 Sec  Memory Limit: 357 MBSubmit: 1531  Solved: 352[Submit][Sta ...

  8. 【62测试】【状压dp】【dfs序】【线段树】

    第一题: 给出一个长度不超过100只包含'B'和'R'的字符串,将其无限重复下去. 比如,BBRB则会形成 BBRBBBRBBBRB 现在给出一个区间[l,r]询问该区间内有多少个字符'B'(区间下标 ...

  9. Codeforces Round #321 (Div. 2) D. Kefa and Dishes 状压dp

    题目链接: 题目 D. Kefa and Dishes time limit per test:2 seconds memory limit per test:256 megabytes 问题描述 W ...

随机推荐

  1. The requested PHP extension ext-http * is missing from your system. Install or enable PHP's http ex

    composer.json 包含 "require": { "ext-http": "*" } 删掉  "ext-http&quo ...

  2. Spring-Boot-Bean的使用,@Repository,@Service,@Controller,@Component

    前言 在Spring MVC的时候,我们使用xml来配置bean,如今的Spring boot推荐我们使用元注解的发生,那就听Spring Boot的推荐,下面我就为大家来介绍下Spring Boot ...

  3. 【C#】Enum,Int,String的互相转换 枚举转换

    Enum为枚举提供基类,其基础类型可以是除 Char 外的任何整型.如果没有显式声明基础类型,则使用 Int32.编程语言通常提供语法来声明由一组已命名的常数和它们的值组成的枚举. 注意:枚举类型的基 ...

  4. MongoDB查询或修改内嵌文档

    作为非关系型数据库中的佼佼者,MongoDB一大优势在于能够在一条文档中存储对象类型的数据,适当增加冗余来让数据库更好用.文档中一个对象类型的字段在MongoDB中被称为内嵌文档(Embedded) ...

  5. 【硬核摄影2.0】用线性CCD器件制作扫描相机

    本文参考资料:[1] (Strongly Recommend!) Fundamentals and Experiments of Line Scan Camera: http://www.elm-ch ...

  6. 字节跳动基于Apache Hudi构建EB级数据湖实践

    来自字节跳动的管梓越同学一篇关于Apache Hudi在字节跳动推荐系统中EB级数据量实践的分享. 接下来将分为场景需求.设计选型.功能支持.性能调优.未来展望五部分介绍Hudi在字节跳动推荐系统中的 ...

  7. rabbitMq可靠消息投递之交换机备份

    //备份队列 @Bean("alternate_queue") public Queue alternate_queue() { return new Queue("al ...

  8. BUUCTF-[CISCN2019 总决赛 Day2 Web1]Easyweb

    BUUCTF-[CISCN2019 总决赛 Day2 Web1]Easyweb 就给了一个这个... 先打上robots.txt看看 发现有源码备份,但不是index.php.bak... 看源码发现 ...

  9. 存储系统管理(三)——磁盘配额及lvm逻辑卷管理

    Linux是一个多用户的操作系统,系统有很多用户,就必须限制每个用户的保存空间,配额就是来管理用户空间的,配额只是针对与设备而言. 1.新建一个分区 2.格式化分区为xfs文件系统 3.将其以配额的方 ...

  10. thinkphp5.x在函数禁用的情况下绕过

    描述 测试的时候发现一个thinkphp的网站,有tp5的漏洞但无法执行命令,但没机会进行后续测试,所有在这里自己搭建环境进行复现一下. 使用的是tp5.0.16 一开始使用网上的payload打一直 ...