B. Soldier and Traveling

Time Limit: 1000ms
Memory Limit: 262144KB

64-bit integer IO format: %I64d      Java class name: (Any)

In the country there are n cities and m bidirectional roads between them. Each city has an army. Army of the i-th city consists of aisoldiers. Now soldiers roam. After roaming each soldier has to either stay in his city or to go to the one of neighboring cities by atmoving along at most one road.

Check if is it possible that after roaming there will be exactly bi soldiers in the i-th city.

 

Input

First line of input consists of two integers n and m (1 ≤ n ≤ 100, 0 ≤ m ≤ 200).

Next line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 100).

Next line contains n integers b1, b2, ..., bn (0 ≤ bi ≤ 100).

Then m lines follow, each of them consists of two integers p and q (1 ≤ p, q ≤ np ≠ q) denoting that there is an undirected road between cities p and q.

It is guaranteed that there is at most one road between each pair of cities.

 

Output

If the conditions can not be met output single word "NO".

Otherwise output word "YES" and then n lines, each of them consisting of n integers. Number in the i-th line in the j-th column should denote how many soldiers should road from city i to city j (if i ≠ j) or how many soldiers should stay in city i (if i = j).

If there are several possible answers you may output any of them.

 

Sample Input

Input
4 4
1 2 6 3
3 5 3 1
1 2
2 3
3 4
4 2
Output
YES
1 0 0 0
2 0 0 0
0 5 1 0
0 0 2 1
Input
2 0
1 2
2 1
Output
NO
思路:最大流;
首先判断变前和变后的和是否相等,如果不等则直接输出NO,否则,转换为最大流求解,原点和原来的点连边权值为原来的人口,然后每个新的状态和汇点连边,权值为后来的人口,然后
按给的边连边,权值为原来的人口,然后跑最大流,判断最大流量是否为sum。最后的矩阵由反边得来,表示从上个点有人口转移而来,反边的值就是转移人口。
  1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<stdlib.h>
5 #include<queue>
6 #include<string.h>
7 #include<map>
8 #include<vector>
9 using namespace std;
10 typedef long long LL;
11 typedef struct pp
12 {
13 int to;
14 int cap;
15 int rev;
16 } aa;
17 vector<pp>vec[205];
18 int level[205];
19 int iter[205];
20 int ans[105];
21 int bns[105];
22 void add(int from,int to,int cap);
23 void bfs(int s);
24 int dfs(int s,int t,int f);
25 int max_flow(int s,int t);
26 const int N = 1e9;
27 int ma[200][200];
28 int main(void)
29 {
30 int n,m;
31 scanf("%d %d",&n,&m);
32 int i,j;
33 int sum1 = 0;
34 int sum2 = 0;
35 for(i = 1; i <= n; i++)
36 {
37 scanf("%d",&ans[i]);
38 sum1 += ans[i];
39 }
40 for(i = 1; i <= n; i++)
41 {
42 scanf("%d",&bns[i]);
43 sum2 += bns[i];
44 }
45 if(sum1 != sum2)
46 printf("NO\n");
47 else
48 {
49 for(i = 1;i <= n; i++)
50 {
51 add(0,i,ans[i]);
52 add(i+n,2*n+1,bns[i]);
53 add(i,i+n,ans[i]);
54 }
55 while(m--)
56 {
57 int x,y;
58 scanf("%d %d",&x,&y);
59 add(x,y+n,ans[x]);
60 add(y,x+n,ans[y]);
61 }
62 int ask = max_flow(0,2*n+1);
63 if(ask != sum1)
64 printf("NO\n");
65 else
66 {
67 for(i = 1;i <= n;i++)
68 {
69 int x = i+n;
70 for(j = 0;j < vec[x].size(); j++)
71 {
72 aa no = vec[x][j];
73 ma[no.to][i] = no.cap;
74 }
75 }printf("YES\n");
76 for(i = 1;i <= n; i++)
77 {
78 for(j = 1;j <= n; j++)
79 {
80 if(j == 1)
81 printf("%d",ma[i][j]);
82 else printf(" %d",ma[i][j]);
83 }
84 printf("\n");
85 }
86 }
87 }return 0;
88 }
89 void add(int from,int to,int cap)
90 {
91 pp nn;
92 nn.to = to;
93 nn.cap = cap;
94 nn.rev = vec[to].size();
95 vec[from].push_back(nn);
96 nn.to = from;
97 nn.cap=0;
98 nn.rev = vec[from].size()-1;
99 vec[to].push_back(nn);
100 }
101 void bfs(int s)
102 {
103 queue<int>que;
104 memset(level,-1,sizeof(level));
105 level[s]=0;
106 que.push(s);
107 while(!que.empty())
108 {
109 int v=que.front();
110 que.pop();
111 int i;
112 for(i=0; i<vec[v].size(); i++)
113 {
114 pp e=vec[v][i];
115 if(level[e.to]==-1&&e.cap>0)
116 {
117 level[e.to]=level[v]+1;
118 que.push(e.to);
119 }
120 }
121 }
122 }
123 int dfs(int s,int t,int f)
124 {
125 if(s==t)
126 return f;
127 for(int &i=iter[s]; i<vec[s].size(); i++)
128 {
129 pp &e=vec[s][i];
130 if(level[e.to]>level[s]&&e.cap>0)
131 {
132 int r=dfs(e.to,t,min(e.cap,f));
133 if(r>0)
134 {
135 e.cap-=r;
136 vec[e.to][e.rev].cap+=r;
137 return r;
138 }
139 }
140 }
141 return 0;
142 }
143 int max_flow(int s,int t)
144 {
145 int flow=0;
146 for(;;)
147 {
148 bfs(s);
149 if(level[t]<0)return flow;
150 memset(iter,0,sizeof(iter));
151 int f;
152 while((f=dfs(s,t,N)) >0)
153 {
154 flow += f;
155 }
156 }
157 }
 

Soldier and Traveling的更多相关文章

  1. Codeforces Round #304 (Div. 2) E. Soldier and Traveling 最大流

    题目链接: http://codeforces.com/problemset/problem/546/E E. Soldier and Traveling time limit per test1 s ...

  2. CF546E Soldier and Traveling(网络流,最大流)

    CF546E Soldier and Traveling 题目描述 In the country there are \(n\) cities and \(m\) bidirectional road ...

  3. 网络流(最大流) CodeForces 546E:Soldier and Traveling

    In the country there are n cities and m bidirectional roads between them. Each city has an army. Arm ...

  4. CF546E Soldier and Traveling

    题目描述 In the country there are n n n cities and m m m bidirectional roads between them. Each city has ...

  5. 【codeforces 546E】Soldier and Traveling

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  6. Codeforces 546E Soldier and Traveling(最大流)

    题目大概说一张无向图,各个结点初始有ai人,现在每个人可以选择停留在原地或者移动到相邻的结点,问能否使各个结点的人数变为bi人. 如此建容量网络: 图上各个结点拆成两点i.i' 源点向i点连容量ai的 ...

  7. 【CF】304 E. Soldier and Traveling

    基础网络流,增加s和t,同时对于每个结点分裂为流入结点和流出结点.EK求最大流,判断最大流是否等于当前总人数. /* 304E */ #include <iostream> #includ ...

  8. codeforces 546E. Soldier and Traveling 网络流

    题目链接 给出n个城市, 以及初始时每个城市的人数以及目标人数.初始时有些城市是相连的. 每个城市的人只可以待在自己的城市或走到与他相邻的城市, 相邻, 相当于只能走一条路. 如果目标状态不可达, 输 ...

  9. 「日常训练」 Soldier and Traveling (CFR304D2E)

    题意 (CodeForces 546E) 对一个无向图,给出图的情况与各个节点的人数/目标人数.每个节点的人只可以待在自己的城市或走到与他相邻的节点. 问最后是否有解,输出一可行解(我以为是必须和答案 ...

随机推荐

  1. SQL-增、删、改操作

    #查看表 select * from `竟企区域数据分析` #在表第一列新增名为"年月"的列alter table `竟企区域数据分析` add column 年月 varchar ...

  2. centos安装后的个人工具

    1.安装vim工具 yum -y install vim 安装完成后在家目录下新建一个.vimrc的配置文件.辅助vim软件功能. set number " 显示行号 set cursorl ...

  3. Demo03找素数

    package Deom1;import java.awt.*;import java.util.Scanner;public class lx {//输入任意两个正整数,求出这两个正整数之间素数的个 ...

  4. 详解 Rainbond Ingress 泛解析域名机制

    Rainbond 作为一款云原生应用管理平台,天生带有引导南北向网络流量的分布式网关 rbd-gateway.区别于一般的 Ingress 配置中,用户需要自行定义域名的使用体验,Rainbond 的 ...

  5. day06 视图层

    day06 视图层 今日内容 视图层 小白必会三板斧 JsonResponse form表单发送文件 FBV与CBV FBV基于函数的视图 CBV基于类的视图 模板层 模板语法的传值 模板语法之过滤器 ...

  6. day12 函数嵌套

    day12 函数嵌套 一. args与kwargs def index(a,b,c): print(a,b,c) def wrapper(*args,**kwargs): # args=(1,2,3) ...

  7. Spark(七)【RDD的持久化Cache和CheckPoint】

    RDD的持久化 1. RDD Cache缓存 ​ RDD通过Cache或者Persist方法将前面的计算结果缓存,默认情况下会把数据以缓存在JVM的堆内存中.但是并不是这两个方法被调用时立即缓存,而是 ...

  8. Hive(五)【DQL数据查询】

    目录 一. 基本查询 1.1 算数运算符 1.2 常用聚合函数 1.3 limit 1.4 where 1.5 比较运算符(between|in|is null) 1.6 LIKE和RLIKE 1.7 ...

  9. 案例 高级定时器和通用定时器产生pwm的区别 gd32和stm32

  10. fastJson序列化

    在pojo实体中有map<String,Object>的属性,有个key是user它存储在数据库中是用户的id数组,而在aop里会对这个属性做用户详细信息查询并重新put给user.在做J ...