Soldier and Traveling
B. Soldier and Traveling
64-bit integer IO format: %I64d Java class name: (Any)
In the country there are n cities and m bidirectional roads between them. Each city has an army. Army of the i-th city consists of aisoldiers. Now soldiers roam. After roaming each soldier has to either stay in his city or to go to the one of neighboring cities by atmoving along at most one road.
Check if is it possible that after roaming there will be exactly bi soldiers in the i-th city.
Input
First line of input consists of two integers n and m (1 ≤ n ≤ 100, 0 ≤ m ≤ 200).
Next line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 100).
Next line contains n integers b1, b2, ..., bn (0 ≤ bi ≤ 100).
Then m lines follow, each of them consists of two integers p and q (1 ≤ p, q ≤ n, p ≠ q) denoting that there is an undirected road between cities p and q.
It is guaranteed that there is at most one road between each pair of cities.
Output
If the conditions can not be met output single word "NO".
Otherwise output word "YES" and then n lines, each of them consisting of n integers. Number in the i-th line in the j-th column should denote how many soldiers should road from city i to city j (if i ≠ j) or how many soldiers should stay in city i (if i = j).
If there are several possible answers you may output any of them.
Sample Input
4 4
1 2 6 3
3 5 3 1
1 2
2 3
3 4
4 2
YES
1 0 0 0
2 0 0 0
0 5 1 0
0 0 2 1
2 0
1 2
2 1
NO
思路:最大流;
首先判断变前和变后的和是否相等,如果不等则直接输出NO,否则,转换为最大流求解,原点和原来的点连边权值为原来的人口,然后每个新的状态和汇点连边,权值为后来的人口,然后
按给的边连边,权值为原来的人口,然后跑最大流,判断最大流量是否为sum。最后的矩阵由反边得来,表示从上个点有人口转移而来,反边的值就是转移人口。
1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<stdlib.h>
5 #include<queue>
6 #include<string.h>
7 #include<map>
8 #include<vector>
9 using namespace std;
10 typedef long long LL;
11 typedef struct pp
12 {
13 int to;
14 int cap;
15 int rev;
16 } aa;
17 vector<pp>vec[205];
18 int level[205];
19 int iter[205];
20 int ans[105];
21 int bns[105];
22 void add(int from,int to,int cap);
23 void bfs(int s);
24 int dfs(int s,int t,int f);
25 int max_flow(int s,int t);
26 const int N = 1e9;
27 int ma[200][200];
28 int main(void)
29 {
30 int n,m;
31 scanf("%d %d",&n,&m);
32 int i,j;
33 int sum1 = 0;
34 int sum2 = 0;
35 for(i = 1; i <= n; i++)
36 {
37 scanf("%d",&ans[i]);
38 sum1 += ans[i];
39 }
40 for(i = 1; i <= n; i++)
41 {
42 scanf("%d",&bns[i]);
43 sum2 += bns[i];
44 }
45 if(sum1 != sum2)
46 printf("NO\n");
47 else
48 {
49 for(i = 1;i <= n; i++)
50 {
51 add(0,i,ans[i]);
52 add(i+n,2*n+1,bns[i]);
53 add(i,i+n,ans[i]);
54 }
55 while(m--)
56 {
57 int x,y;
58 scanf("%d %d",&x,&y);
59 add(x,y+n,ans[x]);
60 add(y,x+n,ans[y]);
61 }
62 int ask = max_flow(0,2*n+1);
63 if(ask != sum1)
64 printf("NO\n");
65 else
66 {
67 for(i = 1;i <= n;i++)
68 {
69 int x = i+n;
70 for(j = 0;j < vec[x].size(); j++)
71 {
72 aa no = vec[x][j];
73 ma[no.to][i] = no.cap;
74 }
75 }printf("YES\n");
76 for(i = 1;i <= n; i++)
77 {
78 for(j = 1;j <= n; j++)
79 {
80 if(j == 1)
81 printf("%d",ma[i][j]);
82 else printf(" %d",ma[i][j]);
83 }
84 printf("\n");
85 }
86 }
87 }return 0;
88 }
89 void add(int from,int to,int cap)
90 {
91 pp nn;
92 nn.to = to;
93 nn.cap = cap;
94 nn.rev = vec[to].size();
95 vec[from].push_back(nn);
96 nn.to = from;
97 nn.cap=0;
98 nn.rev = vec[from].size()-1;
99 vec[to].push_back(nn);
100 }
101 void bfs(int s)
102 {
103 queue<int>que;
104 memset(level,-1,sizeof(level));
105 level[s]=0;
106 que.push(s);
107 while(!que.empty())
108 {
109 int v=que.front();
110 que.pop();
111 int i;
112 for(i=0; i<vec[v].size(); i++)
113 {
114 pp e=vec[v][i];
115 if(level[e.to]==-1&&e.cap>0)
116 {
117 level[e.to]=level[v]+1;
118 que.push(e.to);
119 }
120 }
121 }
122 }
123 int dfs(int s,int t,int f)
124 {
125 if(s==t)
126 return f;
127 for(int &i=iter[s]; i<vec[s].size(); i++)
128 {
129 pp &e=vec[s][i];
130 if(level[e.to]>level[s]&&e.cap>0)
131 {
132 int r=dfs(e.to,t,min(e.cap,f));
133 if(r>0)
134 {
135 e.cap-=r;
136 vec[e.to][e.rev].cap+=r;
137 return r;
138 }
139 }
140 }
141 return 0;
142 }
143 int max_flow(int s,int t)
144 {
145 int flow=0;
146 for(;;)
147 {
148 bfs(s);
149 if(level[t]<0)return flow;
150 memset(iter,0,sizeof(iter));
151 int f;
152 while((f=dfs(s,t,N)) >0)
153 {
154 flow += f;
155 }
156 }
157 }
Soldier and Traveling的更多相关文章
- Codeforces Round #304 (Div. 2) E. Soldier and Traveling 最大流
题目链接: http://codeforces.com/problemset/problem/546/E E. Soldier and Traveling time limit per test1 s ...
- CF546E Soldier and Traveling(网络流,最大流)
CF546E Soldier and Traveling 题目描述 In the country there are \(n\) cities and \(m\) bidirectional road ...
- 网络流(最大流) CodeForces 546E:Soldier and Traveling
In the country there are n cities and m bidirectional roads between them. Each city has an army. Arm ...
- CF546E Soldier and Traveling
题目描述 In the country there are n n n cities and m m m bidirectional roads between them. Each city has ...
- 【codeforces 546E】Soldier and Traveling
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- Codeforces 546E Soldier and Traveling(最大流)
题目大概说一张无向图,各个结点初始有ai人,现在每个人可以选择停留在原地或者移动到相邻的结点,问能否使各个结点的人数变为bi人. 如此建容量网络: 图上各个结点拆成两点i.i' 源点向i点连容量ai的 ...
- 【CF】304 E. Soldier and Traveling
基础网络流,增加s和t,同时对于每个结点分裂为流入结点和流出结点.EK求最大流,判断最大流是否等于当前总人数. /* 304E */ #include <iostream> #includ ...
- codeforces 546E. Soldier and Traveling 网络流
题目链接 给出n个城市, 以及初始时每个城市的人数以及目标人数.初始时有些城市是相连的. 每个城市的人只可以待在自己的城市或走到与他相邻的城市, 相邻, 相当于只能走一条路. 如果目标状态不可达, 输 ...
- 「日常训练」 Soldier and Traveling (CFR304D2E)
题意 (CodeForces 546E) 对一个无向图,给出图的情况与各个节点的人数/目标人数.每个节点的人只可以待在自己的城市或走到与他相邻的节点. 问最后是否有解,输出一可行解(我以为是必须和答案 ...
随机推荐
- 15.Pow(x, n)
Pow(x, n) Total Accepted: 88351 Total Submissions: 317095 Difficulty: Medium Implement pow(x, n). 思路 ...
- C/C++ Qt StatusBar 底部状态栏应用
Qt窗体中默认会附加一个QstatusBar组件,状态栏组件位于主窗体的最下方,其作用是提供一个工具提示功能,当程序中有提示信息是可以动态的显示在这个区域内,状态栏组件内可以增加任何Qt中的通用组件, ...
- Java日期时间操作基础——包含JDK1.8时间操作新特性
JDK1.7日期时间操作 示例小结 public class DateTest { public static final String FORMAT_DATE = "yyyy-MM-dd& ...
- 使用Docker编译OpenResty支持国密ssl加密
编译环境 执行编译操作环境如下 #操作系统 CentOS Linux release 7.4.1708 (Core) #docker版本 Version: 19.03.5 编译过程 Dockerfil ...
- Zookeeper之创建组,加入组,列出组成员和删除组
public class CreateGroup implements Watcher { private static final int SESSION_TIMEOUT=5000; //ZooKe ...
- 什么是 IP 地址 – 定义和解释
IP 地址定义 IP 地址是一个唯一地址,用于标识互联网或本地网络上的设备.IP 代表"互联网协议",它是控制通过互联网或本地网络发送的数据格式的一组规则. 本质上,IP 地址是允 ...
- Postman 中 Pre-request Script 常用 js 脚本
1. 生成一个MD5或SHA1加密的字符串str_md5,str_sha1 string1 = "123456"; var str_md5= CryptoJS.MD5(string ...
- jenkins之分布式
在jenkins的slave节点安装jdk(注:slave节点不需要安装jenkins) #:安装jdk环境 root@ubuntu:/usr/local/src# ls jdk-8u191-linu ...
- OSGI与Spring结合开发web工程
简介: 作为一个新的事实上的工业标准,OSGi 已经受到了广泛的关注, 其面向服务(接口)的基本思想和动态模块部署的能力, 是企业级应用长期以来一直追求的目标.Spring 是一个著名的 轻量级 J2 ...
- 解决 nginx: [error] invalid PID number "" in "/usr/local/nginx/logs/nginx.pid"
使用/usr/local/nginx/sbin/nginx -s reload 重新读取配置文件出错 [root@localhost nginx]/usr/local/nginx/sbin/nginx ...