POJ 1986:Distance Queries
Distance Queries
Time Limit: 2000MS | Memory Limit: 30000K | |
Total Submissions: 18139 | Accepted: 6248 | |
Case Time Limit: 1000MS |
Description
Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in "Navigation Nightmare",followed by a line containing a single integer K, followed by K "distance queries". Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ's distance queries as quickly as possible!
Input
* Lines 1..1+M: Same format as "Navigation Nightmare"
* Line 2+M: A single integer, K. 1 <= K <= 10,000
* Lines 3+M..2+M+K: Each line corresponds to a distance query and contains the indices of two farms.
Output
* Lines 1..K: For each distance query, output on a single line an integer giving the appropriate distance.
Sample Input
7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6
1 4
2 6
Sample Output
13
3
36
Hint
Farms 2 and 6 are 20+3+13=36 apart.
题意
n个点,m条边,每两个相连的点有一个距离,对于每次询问,求出u,v的距离
思路
因为题中给出的图是一个树(Navigation Nightmare题目链接:http://poj.org/problem?id=1984)
对于树上的两点距离,我们有:dis(u,v)=dis(u,root)+dis(v,toot)-2*dis(lca(u,v),root)
预处理出来每个点到根节点的距离,在查询的时候求出u,v两点的lca,然后利用上述公式计算即可
因为是一棵树,所以可以以任意一个节点作为根节点
代码
1 #include <algorithm>
2 #include <iostream>
3 #include <string.h>
4 #define ll long long
5 #define ull unsigned long long
6 #define ms(a,b) memset(a,b,sizeof(a))
7 const int inf=0x3f3f3f3f;
8 const ll INF=0x3f3f3f3f3f3f3f3f;
9 const int maxn=2e5+10;
10 const int mod=1e9+7;
11 const int maxm=1e3+10;
12 using namespace std;
13 int f[maxn];
14 int find(int x)
15 {
16 if(f[x]!=x)
17 f[x]=find(f[x]);
18 return f[x];
19 }
20 inline void join(int x,int y)
21 {
22 int dx=f[x],dy=f[y];
23 if(dx!=dy)
24 f[dy]=dx;
25 }
26 struct Edge
27 {
28 int to,Next;
29 int value;
30 }edge[maxn];
31 int tot1;
32 int head1[maxn];
33 inline void add_edge(int u,int v,int w)
34 {
35 edge[tot1].to=v;
36 edge[tot1].value=w;
37 edge[tot1].Next=head1[u];
38 head1[u]=tot1++;
39 }
40 int vist[maxn];
41 int dis[maxn];
42 // 预处理每个点到根节点的距离
43 void dfs(int u,int len)
44 {
45 dis[u]=len;
46 vist[u]=1;
47 for(int i=head1[u];~i;i=edge[i].Next)
48 {
49 int v=edge[i].to;
50 if(!vist[v])
51 dfs(v,len+edge[i].value);
52 }
53 }
54 struct Query
55 {
56 int to,nex;
57 int index;
58 }query[maxn];
59 int head2[maxn];
60 int tot2;
61 inline void add_query(int u,int v,int index)
62 {
63 query[tot2].to=v;
64 query[tot2].index=index;
65 query[tot2].nex=head2[u];
66 head2[u]=tot2++;
67 query[tot2].to=u;
68 query[tot2].index=index;
69 query[tot2].nex=head2[v];
70 head2[v]=tot2++;
71 }
72 int vis[maxn];
73 int fa[maxn];
74 int ans[maxn];
75 void LCA(int u)
76 {
77 fa[u]=u;
78 vis[u]=1;
79 for(int i=head1[u];~i;i=edge[i].Next)
80 {
81 int v=edge[i].to;
82 if(vis[v])
83 continue;
84 LCA(v);
85 join(u,v);
86 fa[find(u)]=u;
87 }
88 for(int i=head2[u];~i;i=query[i].nex)
89 {
90 int v=query[i].to;
91 if(vis[v])
92 ans[query[i].index]=fa[find(v)];
93 }
94 }
95 inline void init(int n)
96 {
97 tot1=tot2=0;
98 ms(head1,-1);
99 ms(head2,-1);
100 ms(vis,0);
101 ms(vist,0);
102 ms(fa,0);
103 ms(dis,0);
104 for(int i=1;i<=n;i++)
105 f[i]=i;
106 }
107 int x[maxn],y[maxn];
108 int main(int argc, char const *argv[])
109 {
110 #ifndef ONLINE_JUDGE
111 freopen("/home/wzy/in.txt", "r", stdin);
112 freopen("/home/wzy/out.txt", "w", stdout);
113 srand((unsigned int)time(NULL));
114 #endif
115 ios::sync_with_stdio(false);
116 cin.tie(0);
117 int n,m,q;
118 while(cin>>n>>m)
119 {
120 init(n);
121 int u,v,w;
122 char ch[3];
123 for(int i=0;i<m;i++)
124 cin>>u>>v>>w>>ch,add_edge(u,v,w),add_edge(v,u,w);
125 dfs(1,0);
126 cin>>q;
127 for(int i=0;i<q;i++)
128 cin>>x[i]>>y[i],add_query(x[i],y[i],i);
129 LCA(1);
130 for(int i=0;i<q;i++)
131 cout<<dis[x[i]]+dis[y[i]]-2*dis[ans[i]]<<endl;
132 }
133 #ifndef ONLINE_JUDGE
134 cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl;
135 #endif
136 return 0;
137 }
POJ 1986:Distance Queries的更多相关文章
- POJ 1986:Distance Queries(倍增求LCA)
http://poj.org/problem?id=1986 题意:给出一棵n个点m条边的树,还有q个询问,求树上两点的距离. 思路:这次学了一下倍增算法求LCA.模板. dp[i][j]代表第i个点 ...
- poj-1986 Distance Queries(lca+ST+dfs)
题目链接: Distance Queries Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 11531 Accepted ...
- POJ 1986 Distance Queries(Tarjan离线法求LCA)
Distance Queries Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 12846 Accepted: 4552 ...
- poj 1986 Distance Queries LCA
题目链接:http://poj.org/problem?id=1986 Farmer John's cows refused to run in his marathon since he chose ...
- POJ 1986 - Distance Queries - [LCA模板题][Tarjan-LCA算法]
题目链接:http://poj.org/problem?id=1986 Description Farmer John's cows refused to run in his marathon si ...
- POJ 1986 Distance Queries 【输入YY && LCA(Tarjan离线)】
任意门:http://poj.org/problem?id=1986 Distance Queries Time Limit: 2000MS Memory Limit: 30000K Total ...
- POJ 1986 Distance Queries LCA两点距离树
标题来源:POJ 1986 Distance Queries 意甲冠军:给你一棵树 q第二次查询 每次你问两个点之间的距离 思路:对于2点 u v dis(u,v) = dis(root,u) + d ...
- POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 【USACO】距离咨询(最近公共祖先)
POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 [USACO]距离咨询(最近公共祖先) Description F ...
- POJ.1986 Distance Queries ( LCA 倍增 )
POJ.1986 Distance Queries ( LCA 倍增 ) 题意分析 给出一个N个点,M条边的信息(u,v,w),表示树上u-v有一条边,边权为w,接下来有k个询问,每个询问为(a,b) ...
随机推荐
- Yarn 容量调度器多队列提交案例
目录 Yarn 容量调度器多队列提交案例 需求 配置多队列的容量调度器 1 修改如下配置 SecureCRT的上传和下载 2 上传到集群并分发 3 重启Yarn或yarn rmadmin -refre ...
- 浅讲.Net 6 之 WebApplicationBuilder
介绍 .Net 6为我们带来的一种全新的引导程序启动的方式.与之前的拆分成Program.cs和Startup不同,整个引导启动代码都在Program.cs中. WebApplicationBuild ...
- gitlab基础命令之代码回滚
#:gitlab状态 root@ubuntu:~# gitlab-ctl status run: alertmanager: (pid 13305) 215965s; run: log: (pid 1 ...
- 【Linux】【Basis】文件
refer to: https://en.wikipedia.org/wiki/POSIX refer to: https://en.wikipedia.org/wiki/Unix_file_type ...
- 【Linux】【Shell】【text】文本处理工具
文本查看及处理工具:wc, cut, sort, uniq, diff, patch wc:word count wc [OPTION]... [FILE]... -l: lines -w:words ...
- SpringBoot的定时任务
springBoot定时任务可分为多线程和单线程,而单线程又分为注解形式,接口形式 1.基于注解形式 基于注解@Scheduled默认为单线程,开启多个任务时,任务的执行时机会受上一个任务执行时间的影 ...
- Mysql中replace与replace into的用法讲解
Mysql replace与replace into都是经常会用到的功能:replace其实是做了一次update操作,而不是先delete再insert:而replace into其实与insert ...
- 8.Vue.js-计算属性
计算属性关键词: computed. 计算属性在处理一些复杂逻辑时是很有用的. 可以看下以下反转字符串的例子: <!DOCTYPE html><html><head> ...
- jenkins集成openldap
参考图片 集成ldap参考链接:https://www.cnblogs.com/mascot1/p/10498513.html
- 第46篇-signature_handler与result_handler
在之前介绍为native方法设置解释执行的入口时介绍过,当Method::native_function为空时会调用InterpreterRuntime::prepare_native_call()函 ...