Whitcomb L. Notes on Kronecker Products.

定义

Stack Operator

对于任意的矩阵\(A \in \mathbb{R}^{m \times n}\),

\[vec(A) := [A_{00}, A_{10}, \ldots, A_{m-1,n-1}]^T \in \mathbb{R}^{mn},
\]

即按列展开.

Kronecker Product

对于任意的矩阵\(A \in \mathbb{R}^{m\times n }, B \in \mathbb{R}^{p \times q}\),

\[A \otimes B :=
\left [
\begin{array}{ccc}
A_{00} \cdot B & \cdots & A_{0n-1} \cdot B \\
\vdots & \ddots & \vdots \\
A_{m-1,0} \cdot B & \cdots & A_{m-1,n-1} \cdot B
\end{array} \right ] \in \mathbb{R}^{mp \times nq}
\]

性质

Stack Operator

\[\mathrm{Tr}(A^TB) = vec(A)^T vec(B).
\]

Kronecker Product

易知,

\[[A \otimes B]_{ip+s,jq+t} = A_{i,j} \cdot B_{s,t}, \quad i\in [m], s\in[p], j \in [n], t \in [q],
\]

这里\([m] = \{0, 1, \ldots, m-1\}\).

\(a \otimes b = vec(b a^T)\)

  • \(a \in \mathbb{R}^m, b \in \mathbb{R}^n\), 则
    \[a \otimes b = vec(b a^T)
    \]

\((A \otimes B)^T = (A^T \otimes B^T)\)

\((A \otimes B)^T = (A^T \otimes B^T)\)是显然的.

\[[A \otimes B]_{*, jq+t} = A_{*,j} \otimes B_{*, t} = vec(B_{*, t} A_{*,j}^T) \\
[A \otimes B]_{ip+s, *}^T = A_{i,*}^T \otimes B_{s,*}^T = vec(B^T_{s,*} A_{i,*}).
\]

半线性

  • \(A \otimes \alpha B = \alpha A \otimes B = \alpha (A \otimes B).\)

  • \[(A+B) \otimes C = A \otimes C +B \otimes C \\
    A \otimes (B+C) = A\otimes B + A \otimes C.
    \]
  • \((A \otimes B) \otimes C=A \otimes (B\otimes C)\):

    \[\begin{array}{ll}
    (A \otimes B) \otimes C &= [A_{i,j} \cdot B_{s,t} \cdot C ]\\
    &= A \otimes (B \otimes C).
    \end{array}
    \]
  • 通常 \((A \otimes B) \not= (B \otimes A)\).

\((A \otimes B) (C\otimes D) = (AC \otimes BD)\)

\[\begin{array}{ll}
[(A \otimes B) (C\otimes D)]_{ip+s, jq+t}
&= [A \otimes B]_{ip+s, *} [C\otimes D]_{*,jq+t} \\
&= vec(B_{s, *}^TA_{i,*})^T vec(D_{*,t} C_{*,j}^T) \\
&= \mathrm{Tr}(A_{i,*}^TB_{s,*}D_{*,t} C_{*,j}^T) \\
&= \mathrm{Tr}(C_{*,j}^TA_{i,*}^TB_{s,*}D_{*,t}) \\
&= A_{i, *}C_{*,j} \cdot B_{s, *} D_{*,t} \\
&= [AC]_{ij} \cdot [BD]_{st} \\
&= [AC \otimes BD]_{ip+s,jq+t}.
\end{array}
\]

\((A \otimes B)^{-1} = (A^{-1} \otimes B^{-1})\)

条件自然是A, B为满秩方阵:

\[(A \otimes B) (A^{-1} \otimes B^{-1}) = (AA^{-1} \otimes BB^{-1}) = I
\]

\(\mathrm{det}(A_{n\times n} \otimes B_{m \times m}) = \mathrm{det}(A)^m \cdot \mathrm{det}(B)^n\)

就像用普通的高斯消去法将矩阵化为对角型一样, 在对\(A_{n\times n } \otimes B_{m\times m}\)消去的过程中可以发现, \(B\)不会产生丝毫的影响, 结果便是显而易见的了.

\(\mathrm{Tr}(A \otimes B) = \mathrm{Tr}(A) \cdot \mathrm{Tr}(B)\)

\[\mathrm{Tr}(A \otimes B) = \sum_{i=1}^m \sum_{j=1}^n A_iB_j = \mathrm{Tr}(A) \cdot \mathrm{Tr}(B).
\]

\(vec(ABC) = (C^T \otimes A) vec(B)\)

设\(A \in \mathbb{R}^{m\times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{p \times q}\),

\[[vec(ABC)]_{jm+i} = [ABC]_{i,j} = \mathrm{Tr}(A_{i,*}BC_{*,j}) = \mathrm{Tr}(C_{*,j}A_{i,*}B)=vec(A_{i,*}^TC_{*j}^T)^T vec(B) = [C^T \otimes A]_{jm+i,*} vec(B)
\]

特例:

\[Ax = IAx = vec(IAx) = (x^T \otimes I)vec(A)
\]

这个在处理梯度的时候会比较有用:

\[y = Ax
\]

\[\mathrm{d}y = (\mathrm{d}A)x + A\mathrm{d}x = (x^T \otimes I) vec(\mathrm{d}A) + A \mathrm{d}x.
\]

Kronecker Products and Stack Operator的更多相关文章

  1. C++数据结构之Linked Stack(链式栈)

    上一节用连续的方式实现栈,这种方法用一个确定大小的数组存储栈元素,因为当存储达到数组上限时会遇到麻烦. 连续实现的栈与链式实现的栈的最大不同在于,前者使用一个确定大小的数组存储每一个栈元素,后者使用带 ...

  2. STL学习系列四:Stack容器

    Stack简介 stack是堆栈容器,是一种“先进后出”的容器. stack是简单地装饰deque容器而成为另外的一种容器. #include <stack> 1.stack对象的默认构造 ...

  3. C++STL学习笔记_(3)stack

    10.2.4stack容器 Stack简介 ²  stack是堆栈容器,是一种"先进后出"的容器. ²  stack是简单地装饰deque容器而成为另外的一种容器. ²  #inc ...

  4. STL - stack(栈)

    Stack简介 stack是堆栈容器,是一种"先进后出"的容器. stack是简单地装饰deque容器而成为另外的一种容器. #include <stack> stac ...

  5. 04--STL序列容器(Stack和Queue)

    总括: stack和queue不支持迭代 一:栈Stack (一)栈的简介 stack是堆栈容器,是一种“先进后出”的容器. stack是简单地装饰deque容器而成为另外的一种容器. (二)栈的默认 ...

  6. STL之stack容器

    1.stack容器 1) stack是堆栈容器,是一种“先进后出”的容器. 2)stack是简单地装饰deque容器而成为另外的一种容器. 3)头文件.#include <stack> 2 ...

  7. STL stack 容器

    STL stack 容器 Stack简介 stack是堆栈容器,是一种“先进后出”的容器.      stack是简单地装饰deque容器而成为另外的一种容器.      #include <s ...

  8. C++ STL 之 stack

    stack 是一种先进后出(first in last out,FILO)的数据结构,它只有一个出口,stack 只允许在栈顶新增元素,移除元素,获得顶端元素,但是除了顶端之外,其他地方不允许存取 元 ...

  9. C++ Templates (2.1 类模板Stack的实现 Implementation of Class Template Stack)

    返回完整目录 目录 2.1 类模板Stack的实现 Implementation of Class Template Stack 2.1.1 声明类模板 Declaration of Class Te ...

随机推荐

  1. SpringBoot Profiles 多环境配置及切换

    目录 前言 默认环境配置 多环境配置 多环境切换 小结 前言 大部分情况下,我们开发的产品应用都会根据不同的目的,支持运行在不同的环境(Profile)下,比如: 开发环境(dev) 测试环境(tes ...

  2. Go Robot

    1 <html> 2 <meta http-equiv="Content-Type" content="text/html; charset=utf-8 ...

  3. day04:Python学习笔记

    day04:Python学习笔记 1.算数运算符 1.算数运算符 print(10 / 3) #结果带小数 print(10 // 3) #结果取整数,不是四舍五入 print(10 % 3) #结果 ...

  4. Vue API 3模板语法 ,指令

    条件# v-if# v-if 指令用于条件性地渲染一块内容.这块内容只会在指令的表达式返回 truthy 值的时候被渲染. v-show# v-show 指令也是用于根据条件展示一块内容.v-show ...

  5. When do we pass arguments by reference or pointer?

    在C++中,基于以下如下我们通过以引用reference的形式传递变量. (1)To modify local variables of the caller function A reference ...

  6. 使用jquery刷新页面以及javascript的一些基本函数

    如何使用jquery刷新当前页面 下面介绍全页面刷新方法:有时候可能会用到 1.window.location.reload()刷新当前页面. 2.parent.location.reload()刷新 ...

  7. Linux 性能优化笔记:应用监控

    指标监控 跟系统监控一样,在构建应用程序的监控系统之前,首先也需要确定,到底需要监控哪些指标.特别是要清楚,有哪些指标可以用来快速确认应用程序的性能问题. 对系统资源的监控,USE 法简单有效,却不代 ...

  8. drone使用git tag作为镜像tag

    官方自动tag plugin/docker 已支持自动标签,使用方法如下 steps: - name: docker image: plugins/docker settings: repo: foo ...

  9. bjdctf_2020_router

    这道题其实主要考linux下的命令.我们来试一下!!! 可以看到,只要我们在命令之间加上分号,就可以既执行前面的命令,又执行后面的命令... 这道题就不看保护了,直接看一下关键的代码. 这里可以看到s ...

  10. EhCache简单入门

    一 介绍 EhCache 是一个纯Java的进程内缓存框架,具有快速.精干等特点,是Hibernate中默认CacheProvider.Ehcache是一种广泛使用的开源Java分布式缓存.主要面向通 ...