P6106 [Ynoi2010] Self Adjusting Top Tree

题意

给出平面直角坐标系上若干不与坐标轴平行的处于第一象限的互不相交的线段,多次询问平面中一个第一象限的矩形与这些线段相交部分的长度长度和与所有线段长度和的比值。给出的所有坐标 \(\in[1,10^6]\)。

思路

假设所有线段的斜率都是正的,考虑将询问差分成四个前缀矩形。我们只需要考虑统计若干斜率为正的互不相交的线段与一个前缀矩形的交就行了。

经典套路:若线段互不相交,在扫描线时其相对顺序不会变。比如在用与 \(y\) 轴平行的直线做扫描线时线段与其相交的 \(y\) 坐标相对大小不会变。再比如,用以原点为端点的射线做扫描线时线段与其交点到原点距离的相对大小不会变

因此,我们用平行于 \(y\) 轴的直线做扫描线,用平衡树维护区间线段长度的和。即,维护单位 \(x\) 区间线段长度增量,维护区间线段长度和,支持区间加,支持插入删除。因为线段斜率为正且询问为前缀矩形,所以没有线段另一端不在矩形内的情况。这样就能统计且恰好统计所有与矩形右侧相交的线段的长度和。

统计所有与矩形上侧相交的长度和只需要将扫描线变为与 \(x\) 平行的再做一遍就可以了。为了使与顶点交的线段只统计一次,可以将翻转前后其中一次的所有查询减去 eps 使其不合法。

对于所有完全被包含的线段,发现只要线段右上端在矩形内就全部在矩形内。做一遍二维数点即可。

对于所有斜率为负的线段,将它们和询问矩形上下反转,然后再做一遍上述过程即可。

至此,所有的贡献被统计完毕。实现时请注意细节。

代码我觉得我写的还行,就放出来,看懂了的应该挺容易实现的,没看懂的可以参考代码。

实现

#include<bits/stdc++.h>
using namespace std;
inline int read(){
int w=0,x=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=x*10+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
const int maxn=4e5+10,maxm=1e6+10,N=1e6+1;
double eps=1e-6;
int n,m,cnt[2],c[2][maxn];
double ans[maxn];
struct vec{
int x,y;
vec(int x=0,int y=0):x(x),y(y){}
inline void updown(){y=N-y;}
};
int X;
struct seg{
vec a,b;
seg(){}
seg(vec a,vec b):a(a),b(b){}
inline double length(){return sqrt(1.*(b.y-a.y)*(b.y-a.y)+1.*(b.x-a.x)*(b.x-a.x));}
inline void updown(){a.updown(),b.updown();}
inline double y() {return a.y+1.0*(X-a.x)*(b.y-a.y)/(b.x-a.x);}
}a[maxn],b[2][maxn];
struct que{
int x;
double y;
int tp,id;
que(){}
que(int x,double y,int tp,int id):x(x),y(y),tp(tp),id(id){}
bool operator < (const que &b) const {return x<b.x;}
}q[maxn<<2];
#define ls son[x][0]
#define rs son[x][1]
double s1[maxn],s2[maxn],s[maxn],tag[maxn],sum[maxn];
int tot,rt,e[maxn],son[maxn][2],rnd[maxn];
inline int newnode(int i){e[++tot]=i,s1[tot]=s[tot]=a[i].length()/(a[i].b.x-a[i].a.x),s2[tot]=tag[tot]=son[tot][0]=son[tot][1]=sum[tot]=0,rnd[tot]=rand();return tot;}
inline void add(int x,int a){s2[x]+=a*s1[x],sum[x]+=a,tag[x]+=a;}
inline void pushdown(int x){if(tag[x]) add(ls,tag[x]),add(rs,tag[x]),tag[x]=0;}
inline void pushup(int x){s2[x]=s2[ls]+s2[rs]+sum[x]*s[x],s1[x]=s1[ls]+s1[rs]+s[x];}
void split(int x,double k,int &a,int &b){
if(!x) return a=b=0,void();
pushdown(x);
if(k>=star::a[e[x]].y()) a=x,split(rs,k,rs,b);
else b=x,split(ls,k,a,ls);
pushup(x);
}
int merge(int a,int b){
if(!a or !b) return a|b;
if(rnd[a]<rnd[b]){
pushdown(a),son[a][1]=merge(son[a][1],b),pushup(a);
return a;
}else{
pushdown(b),son[b][0]=merge(a,son[b][0]),pushup(b);
return b;
}
}
inline void insert(int i){
int x,y;
split(rt,a[i].y(),x,y);
rt=merge(merge(x,newnode(i)),y);
}
inline void update(int i){
int a,b;
split(rt,star::a[i].y(),a,b);
static int st[maxn];
int top=0,x,y;
for(y=0,x=a;rs;y=x,x=rs) pushdown(x),st[++top]=x;
if(e[x]!=i) return rt=merge(merge(a,newnode(i)),b),void();
if(!y) a=son[a][0];
else son[y][1]=merge(ls,rs);
while(top) pushup(st[top--]);
rt=merge(a,b);
}
inline double query(double k){
int x,y;
split(rt,k,x,y);
double ans=s2[x];
rt=merge(x,y);
return ans;
}
#undef ls
#undef rs
double C[maxm];
inline void Insert(int x,double k){for(;x<=N;x+=x&-x) C[x]+=k;}
inline double Query(int x){double ans=0;for(;x;x-=x&-x) ans+=C[x];return ans;}
inline void solve(int *c,int n,seg *b){
int tot=0;
for(int i=1;i<=m;i++) q[++tot]=que(b[i].b.x,b[i].b.y-eps,1,i),q[++tot]=que(b[i].a.x,b[i].b.y-eps,-1,i),q[++tot]=que(b[i].b.x,b[i].a.y-eps,-1,i),q[++tot]=que(b[i].a.x,b[i].a.y-eps,1,i);
sort(q+1,q+1+tot);
if(eps!=0){
sort(c+1,c+1+n,[](int x,int y){return a[x].b.x<a[y].b.x;});
for(int i=1,j=1;i<=tot;i++){
while(j<=n and a[c[j]].b.x<=q[i].x) Insert(a[c[j]].b.y,a[c[j]].length()),j++;
ans[q[i].id]+=q[i].tp*Query(q[i].y+eps);
}
}
static pair<int,int> op[maxn<<1];
for(int i=1;i<=n;i++) op[i*2-1]=make_pair(a[c[i]].a.x,c[i]),op[i*2]=make_pair(a[c[i]].b.x,c[i]);
n<<=1;
sort(op+1,op+1+n);
X=0;
for(int i=1,j=1;i<=tot;i++){
while(j<=n and op[j].first<=q[i].x) add(rt,op[j].first-X),X=op[j].first,update(op[j].second),j++;
add(rt,q[i].x-X),X=q[i].x,ans[q[i].id]+=q[i].tp*query(q[i].y);
}
memset(C,0,sizeof C),rt=tot=0;
}
inline void solve(){
solve(c[0],cnt[0],b[0]);
solve(c[1],cnt[1],b[1]);
}
inline void work(){
srand(time(0));
n=read();
double len=0;
for(int i=1;i<=n;i++){
a[i].a.x=read(),a[i].a.y=read(),a[i].b.x=read(),a[i].b.y=read();
if(a[i].a.x>a[i].b.x) swap(a[i].a,a[i].b);
int t=a[i].a.y>a[i].b.y;
if(t) a[i].updown();
c[t][++cnt[t]]=i;
len+=a[i].length();
}
m=read();
for(int i=1;i<=m;i++) b[0][i].a.x=read(),b[0][i].a.y=read(),b[0][i].b.x=read(),b[0][i].b.y=read(),b[1][i]=b[0][i],b[1][i].updown(),swap(b[1][i].a.y,b[1][i].b.y);
solve();
for(int i=1;i<=n;i++) swap(a[i].a.x,a[i].a.y),swap(a[i].b.x,a[i].b.y);
for(int i=1;i<=m;i++) swap(b[0][i].a.x,b[0][i].a.y),swap(b[0][i].b.x,b[0][i].b.y),swap(b[1][i].a.x,b[1][i].a.y),swap(b[1][i].b.x,b[1][i].b.y);
eps=0;
solve();
for(int i=1;i<=m;i++) printf("%.10f\n",ans[i]/len);
}
}
signed main(){
star::work();
return 0;
}

P6106 [Ynoi2010] Self Adjusting Top Tree的更多相关文章

  1. 动态树(LCT、Top Tree、ETT)

    LCT Upd: 一个细节:假如我们要修改某个节点的数据,那么要先把它makeroot再修改,改完之后pushup. LCT是一种维护森林的数据结构,本质是用Splay维护实链剖分. 实链剖分大概是这 ...

  2. Size Balance Tree(SBT模板整理)

    /* * tree[x].left 表示以 x 为节点的左儿子 * tree[x].right 表示以 x 为节点的右儿子 * tree[x].size 表示以 x 为根的节点的个数(大小) */ s ...

  3. [bzoj3282]Tree (lct)

    昨天看了一天的lct..当然幸好最后看懂了(也许吧..) 论善良学长的重要性T_T,老司机带带我! 这题主要是删边的时候还要判断一下..蒟蒻一开始天真的以为存在的边才能删结果吃了一发wa... 事实是 ...

  4. Link-Cut Tree指针模板

    模板: 以下为弹飞绵羊代码: #define Troy #include "bits/stdc++.h" using namespace std; ; inline int rea ...

  5. 【BZOJ2631】tree

    Description 一棵n个点的树.每一个点的初始权值为1. 对于这棵树有q个操作,每一个操作为下面四种操作之中的一个: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 ...

  6. PAT 1086 Tree Traversals Again[中序转后序][难]

    1086 Tree Traversals Again(25 分) An inorder binary tree traversal can be implemented in a non-recurs ...

  7. LeetCode Construct Binary Tree from String

    原题链接在这里:https://leetcode.com/problems/construct-binary-tree-from-string/description/ 题目: You need to ...

  8. HDU 6191 Query on A Tree(字典树+离线)

    Query on A Tree Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Othe ...

  9. 【置顶】Trotyl's OI tree

    \(\rm thx\):@\(\rm UntilMadow\) ! \(\color{Green}{\rm Pupil}\) :只会一点点 \(\color{blue}{\text{Expert}}\ ...

随机推荐

  1. Vue项目开发环境搭建

    初步学习vue.js相关知识,下面是我搭建环境中一些经验总结,希望可以帮到有需要的同学.首选先安装好以下的工具和环境. 一.软件安装 1.WebStorm官网下载地址:https://www.jetb ...

  2. Spring4

    Spring javaEE开发一站式框架 web层:SpringMVC Service层:Spring的Bean管理(IoC).Spring声明式事务 Dao层:Spring的jdbc模板.Sprin ...

  3. halcon——缺陷检测常用方法总结(模板匹配(定位)+差分)

    引言 机器视觉中缺陷检测分为一下几种: blob分析+特征 模板匹配(定位)+差分 光度立体:halcon--缺陷检测常用方法总结(光度立体) - 唯有自己强大 - 博客园 (cnblogs.com) ...

  4. 单点突破:MySQL之基础

    前言 开发环境:MySQL5.7.31 本文并不是mysql语法语句的教程或者笔记,如果初学MySQL,想要看sql的教程或者学习各种语法语句规范,可以看看一千行MySQL学习笔记或者MySQL教程| ...

  5. RabbitMQ由浅入深入门全总结(一)

    写在最前面 距离上一次发文章已经很久了,其实这段时间一直也没有停笔,只不过在忙着找工作还有学校结课的事情,重新弄了一下博客,后面也会陆陆续续会把文章最近更新出来~ 这篇文章有点长,就分了两篇Q PS: ...

  6. Luat Inside | 致敬经典,使用Air724UG制作简易贪吃蛇

    作者简介: 打盹的消防车--活跃于Luat社群的新生代全能开发者,东北小伙儿爽朗幽默.好学敏思,更是实力行动派.幼年曾手握火红炽铁而后全然无恙,堪称魔幻经历:如今热衷于各类嵌入式软硬件研究,快意物联江 ...

  7. Jmeter将token设置为全局变量并跨线程进行传递参数

    我们在用Jmeter做性能测试时,一般会涉及到多个线程组.而线程之间或接口之间会对上个参数有依赖性,那么我们将接口中的参数提取出来供其他线程组或接口调用呢这就需要使用到__setProperty函数, ...

  8. ES6 数组的方法

     数组的类 数组的类是Array 数组的定义 var arr=[元素] var arr=new Array(3) 数字3,代表有三个元素或者三个空位 如果数组定义采用 new 实例,类中跟的是一个数字 ...

  9. ceph-csi源码分析(8)-cephfs driver分析

    更多 ceph-csi 其他源码分析,请查看下面这篇博文:kubernetes ceph-csi分析目录导航 ceph-csi源码分析(8)-cephfs driver分析 当ceph-csi组件启动 ...

  10. @EnableDiscoveryClient与Nacos自动注册

    前一阵看到有篇博客说cloud从Edgware版本开始,可以不加@EnableDiscoveryClient注解,只要配置好注册中心的相关配置即可自动开启服务注册功能,比较好奇其中的原理,研究了一番特 ...