(以下默认$A_{0},D_{0},P_{0},K_{0}$都为非负整数)

显然存活轮数$S=\lceil\frac{H_{0}}{C_{p}\max(A_{1}-D_{0},1)}\rceil$​​​是一个关键的变量,且根据数论分块其仅有$o(\sqrt{H_{0}})$​​​种取值,不妨利用数论分块直接$o(\sqrt{H_{0}})$​​枚举,进而也可以确定$D_{0}$​​​​​​(取对应的最小值即可)

(上取整的数论分块实际上即将$H_{0}-1$即可)

进一步的,有以下结论:存在一种取到最值的方案,满足$A_{0}=0$​​或$A_{0}=N'$​​​

关于证明,考虑再枚举这$S$​​轮中物理攻击和魔法攻击的轮数,即$S_{p}$​​和$S_{m}$​​(其中$S_{p}+S_{m}=S$​​)

接下来,考虑如何分配物理攻击和魔法攻击的点数,令$F_{p}(x)$​和$F_{m}(x)$​分别为给物理攻击和魔法攻击分配$x$​​​点的最大伤害值,显然有
$$
\begin{cases}F_{p}(x)=C_{p}S_{p}\max(x-D_{1},1)\\F_{m}(x)=C_{m}\begin{cases}\lfloor\frac{x}{2}\rfloor(x-\lfloor\frac{x}{2}\rfloor)&(\lfloor\frac{x}{2}\rfloor\le S_{m})\\S_{m}(x-S_{m})&(\lfloor\frac{x}{2}\rfloor>S_{m})\end{cases}\end{cases}
$$
最终答案即求$F(x)=F_{p}(x)+F_{m}(N'-x)$在$x\in [0,N']$的最大值,不难证明$F_{p}$和$F_{m}$都是下凸的,进而将$F_{m}$翻转后和$F_{p}$求和仍是下凸的,也即$F$是下凸的

同时,下凸函数的最大值显然在端点处取到,即$x=0$​​或$x=N'$​​,显然$x$也即$A_{0}$​,结论得证

通过这个结论,对两类分别讨论:

1.若$A_{0}=0$​,考虑再枚举$K_{0}$​,答案即​​
$$
\begin{cases}C_{p}(S-K_{0})+C_{m}K_{0}(N'-K_{0})&(K_{0}<S)\\C_{m}S(N'-K_{0})&( K_{0}\ge S)\end{cases}
$$
(为了保证魔法攻击不劣于物理攻击,可以令$K_{0}<N'$,但实际上也会在下面的情况中考虑)​​

即是一个关于$K_{0}$​​的分段一次和二次函数, 不难求极值

2.若$A_{0}=N'$​​​,显然全部使用物理攻击,答案即$C_{p}S\max(A_{0}-D_{1},1)$​​

由于有$t$组数据,最终总复杂度为$o(t\sqrt{H_{0}})$​,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define ll long long
4 int t,Cp,Cm,H0,A1,D1,n;
5 ll ans;
6 ll f(ll a,ll b,ll c,int x){
7 return a*x*x+b*x+c;
8 }
9 ll get_max(ll a,ll b,ll c,int l,int r){
10 ll pos=-b/(a<<1),ans=max(f(a,b,c,l),f(a,b,c,r));
11 if ((l<=pos)&&(pos<=r))ans=max(ans,f(a,b,c,pos));
12 if ((l<=pos+1)&&(pos+1<=r))ans=max(ans,f(a,b,c,pos+1));
13 return ans;
14 }
15 int main(){
16 scanf("%d",&t);
17 while (t--){
18 scanf("%d%d%d%d%d%d",&Cp,&Cm,&H0,&A1,&D1,&n);
19 ans=0;
20 for(int i=1,j;i<=A1;i=j+1){
21 if (i>=H0)j=A1;
22 else j=min((H0-1)/((H0-1)/i),A1);
23 int S=((H0+i-1)/i+Cp-1)/Cp,D0=A1-j,nn=n-D0;
24 if (nn<0)continue;
25 if (min(nn,S)>1)ans=max(ans,get_max(-Cm,(ll)Cm*nn-Cp,(ll)Cp*S,1,min(nn,S)-1));
26 if (S<nn)ans=max(ans,(ll)Cm*S*(nn-S));
27 ans=max(ans,(ll)Cp*S*max(nn-D1,1));
28 }
29 printf("%lld\n",ans);
30 }
31 return 0;
32 }

[hdu7026]Might and Magic的更多相关文章

  1. Codeforces CF#628 Education 8 D. Magic Numbers

    D. Magic Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  2. [8.3] Magic Index

    A magic index in an array A[0...n-1] is defined to be an index such that A[i] = i. Given a sorted ar ...

  3. Python魔术方法-Magic Method

    介绍 在Python中,所有以"__"双下划线包起来的方法,都统称为"Magic Method",例如类的初始化方法 __init__ ,Python中所有的魔 ...

  4. 【Codeforces717F】Heroes of Making Magic III 线段树 + 找规律

    F. Heroes of Making Magic III time limit per test:3 seconds memory limit per test:256 megabytes inpu ...

  5. 2016中国大学生程序设计竞赛 - 网络选拔赛 C. Magic boy Bi Luo with his excited tree

    Magic boy Bi Luo with his excited tree Problem Description Bi Luo is a magic boy, he also has a migi ...

  6. 一个快速double转int的方法(利用magic number)

    代码: int i = *reinterpret_cast<int*>(&(d += 6755399441055744.0)); 知识点: 1.reinterpret_cast&l ...

  7. MAGIC XPA最新版本Magic xpa 2.4c Release Notes

    New Features, Feature Enhancements and Behavior ChangesSubforms – Behavior Change for Unsupported Ta ...

  8. Magic xpa 2.5发布 Magic xpa 2.5 Release Notes

    Magic xpa 2.5發佈 Magic xpa 2.5 Release Notes Magic xpa 2.5 Release NotesNew Features, Feature Enhance ...

  9. How Spring Boot Autoconfiguration Magic Works--转

    原文地址:https://dzone.com/articles/how-springboot-autoconfiguration-magic-works In my previous post &qu ...

随机推荐

  1. 腾讯混合云存储 TStor 系列再添新成员,并行存储一体机正式发布

    最近国内某大型互联网公司依靠其数据优势成功上市,可见数据的重要性,而数据和存储密不可分,您真的知道自己需要更高性能存储吗? 在当今数据爆发式增长的时代,数据已经成为很多行业最重要的资源,没有之一. 数 ...

  2. redis学习笔记-02 list列表类型命令

    一.lpush key value1 value2 value3 value4(命令将一个或多个值插入到列表头部. 如果 key 不存在,一个空列表会被创建并执行 LPUSH 操作) lpush k1 ...

  3. 七牛云的 python sdk 是如何 批量删除资源的

    今天做项目的时候用到七牛云,关于对资源的操作是在后端做的,用的SDK,但是,在网上没找到详细的解析,官方文档也没有太详细的解说,所以无奈只好看下源码 这里做一下简单的记录 from qiniu imp ...

  4. Java:AQS 小记-1(概述)

    Java:AQS 小记-1(概述) 概述 全称是 Abstract Queued Synchronizer(抽象队列同步器),是阻塞式锁和相关的同步器工具的框架,这个类在 java.util.conc ...

  5. 大闸蟹的项目分析——CSDN APP

    大闸蟹的软件案例分析 项目 内容 这个作业属于那个课程 班级博客 这个作业的要求在哪里 作业要求 我在这个课程的目标是 学习软件工程的相关知识 这个作业在哪个具体方面帮我实现目标 从多角度分析软件 一 ...

  6. C语言中都有哪些常见的数据结构你都知道几个?

    上次在面试时被面试官问到学了哪些数据结构,那时简单答了栈.队列/(ㄒoㄒ)/~~其它就都想不起来了,今天有空整理了一下几种常见的数据结构,原来我们学过的数据结构有这么多~ 首先,先来回顾下C语言中常见 ...

  7. Android 服务名称规则invalid service name 限制16字符以内

    今天调试网络服务的时候为了区分,修改了原有服务名称,同时新增了两个服务. 系统运行的时候报错找不到对应的服务 init: no such service 'wpa_supplicant_common' ...

  8. 转:(WIN)S04-CH01 PCIE XDMA开发环境搭建以及环路测试

    摘要: 这一章开始主要介绍 XILINX FPGA PICE IP XDMA IP的使用.XDMA IP使用部分教程分LINUX 篇和WINDOWS篇两个部分.通过实战,面向应用,提供给大家 XILI ...

  9. VUE项目实现主题切换

    需求是 做一个深色主题和浅色主题切换的效果 方法一 多套css 这个方法也是最简单,也是最无聊的. <!-- 中心 --> <template> 动态获取父级class名称,进 ...

  10. 【Azure 存储服务】如何把开启NFS 3.0协议的Azure Blob挂载在Linux VM中呢?(NFS: Network File System 网络文件系统)

    问题描述 如何把开启NFS协议的Azure Blob挂载到Linux虚拟机中呢? [答案]:可以使用 NFS 3.0 协议从基于 Linux 的 Azure 虚拟机 (VM) 或在本地运行的 Linu ...