(以下默认$A_{0},D_{0},P_{0},K_{0}$都为非负整数)

显然存活轮数$S=\lceil\frac{H_{0}}{C_{p}\max(A_{1}-D_{0},1)}\rceil$​​​是一个关键的变量,且根据数论分块其仅有$o(\sqrt{H_{0}})$​​​种取值,不妨利用数论分块直接$o(\sqrt{H_{0}})$​​枚举,进而也可以确定$D_{0}$​​​​​​(取对应的最小值即可)

(上取整的数论分块实际上即将$H_{0}-1$即可)

进一步的,有以下结论:存在一种取到最值的方案,满足$A_{0}=0$​​或$A_{0}=N'$​​​

关于证明,考虑再枚举这$S$​​轮中物理攻击和魔法攻击的轮数,即$S_{p}$​​和$S_{m}$​​(其中$S_{p}+S_{m}=S$​​)

接下来,考虑如何分配物理攻击和魔法攻击的点数,令$F_{p}(x)$​和$F_{m}(x)$​分别为给物理攻击和魔法攻击分配$x$​​​点的最大伤害值,显然有
$$
\begin{cases}F_{p}(x)=C_{p}S_{p}\max(x-D_{1},1)\\F_{m}(x)=C_{m}\begin{cases}\lfloor\frac{x}{2}\rfloor(x-\lfloor\frac{x}{2}\rfloor)&(\lfloor\frac{x}{2}\rfloor\le S_{m})\\S_{m}(x-S_{m})&(\lfloor\frac{x}{2}\rfloor>S_{m})\end{cases}\end{cases}
$$
最终答案即求$F(x)=F_{p}(x)+F_{m}(N'-x)$在$x\in [0,N']$的最大值,不难证明$F_{p}$和$F_{m}$都是下凸的,进而将$F_{m}$翻转后和$F_{p}$求和仍是下凸的,也即$F$是下凸的

同时,下凸函数的最大值显然在端点处取到,即$x=0$​​或$x=N'$​​,显然$x$也即$A_{0}$​,结论得证

通过这个结论,对两类分别讨论:

1.若$A_{0}=0$​,考虑再枚举$K_{0}$​,答案即​​
$$
\begin{cases}C_{p}(S-K_{0})+C_{m}K_{0}(N'-K_{0})&(K_{0}<S)\\C_{m}S(N'-K_{0})&( K_{0}\ge S)\end{cases}
$$
(为了保证魔法攻击不劣于物理攻击,可以令$K_{0}<N'$,但实际上也会在下面的情况中考虑)​​

即是一个关于$K_{0}$​​的分段一次和二次函数, 不难求极值

2.若$A_{0}=N'$​​​,显然全部使用物理攻击,答案即$C_{p}S\max(A_{0}-D_{1},1)$​​

由于有$t$组数据,最终总复杂度为$o(t\sqrt{H_{0}})$​,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define ll long long
4 int t,Cp,Cm,H0,A1,D1,n;
5 ll ans;
6 ll f(ll a,ll b,ll c,int x){
7 return a*x*x+b*x+c;
8 }
9 ll get_max(ll a,ll b,ll c,int l,int r){
10 ll pos=-b/(a<<1),ans=max(f(a,b,c,l),f(a,b,c,r));
11 if ((l<=pos)&&(pos<=r))ans=max(ans,f(a,b,c,pos));
12 if ((l<=pos+1)&&(pos+1<=r))ans=max(ans,f(a,b,c,pos+1));
13 return ans;
14 }
15 int main(){
16 scanf("%d",&t);
17 while (t--){
18 scanf("%d%d%d%d%d%d",&Cp,&Cm,&H0,&A1,&D1,&n);
19 ans=0;
20 for(int i=1,j;i<=A1;i=j+1){
21 if (i>=H0)j=A1;
22 else j=min((H0-1)/((H0-1)/i),A1);
23 int S=((H0+i-1)/i+Cp-1)/Cp,D0=A1-j,nn=n-D0;
24 if (nn<0)continue;
25 if (min(nn,S)>1)ans=max(ans,get_max(-Cm,(ll)Cm*nn-Cp,(ll)Cp*S,1,min(nn,S)-1));
26 if (S<nn)ans=max(ans,(ll)Cm*S*(nn-S));
27 ans=max(ans,(ll)Cp*S*max(nn-D1,1));
28 }
29 printf("%lld\n",ans);
30 }
31 return 0;
32 }

[hdu7026]Might and Magic的更多相关文章

  1. Codeforces CF#628 Education 8 D. Magic Numbers

    D. Magic Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  2. [8.3] Magic Index

    A magic index in an array A[0...n-1] is defined to be an index such that A[i] = i. Given a sorted ar ...

  3. Python魔术方法-Magic Method

    介绍 在Python中,所有以"__"双下划线包起来的方法,都统称为"Magic Method",例如类的初始化方法 __init__ ,Python中所有的魔 ...

  4. 【Codeforces717F】Heroes of Making Magic III 线段树 + 找规律

    F. Heroes of Making Magic III time limit per test:3 seconds memory limit per test:256 megabytes inpu ...

  5. 2016中国大学生程序设计竞赛 - 网络选拔赛 C. Magic boy Bi Luo with his excited tree

    Magic boy Bi Luo with his excited tree Problem Description Bi Luo is a magic boy, he also has a migi ...

  6. 一个快速double转int的方法(利用magic number)

    代码: int i = *reinterpret_cast<int*>(&(d += 6755399441055744.0)); 知识点: 1.reinterpret_cast&l ...

  7. MAGIC XPA最新版本Magic xpa 2.4c Release Notes

    New Features, Feature Enhancements and Behavior ChangesSubforms – Behavior Change for Unsupported Ta ...

  8. Magic xpa 2.5发布 Magic xpa 2.5 Release Notes

    Magic xpa 2.5發佈 Magic xpa 2.5 Release Notes Magic xpa 2.5 Release NotesNew Features, Feature Enhance ...

  9. How Spring Boot Autoconfiguration Magic Works--转

    原文地址:https://dzone.com/articles/how-springboot-autoconfiguration-magic-works In my previous post &qu ...

随机推荐

  1. java 从零开始手写 RPC (03) 如何实现客户端调用服务端?

    说明 java 从零开始手写 RPC (01) 基于 socket 实现 java 从零开始手写 RPC (02)-netty4 实现客户端和服务端 写完了客户端和服务端,那么如何实现客户端和服务端的 ...

  2. Serverless 架构到底要不要服务器?

    作者 | aoho 来源 | Serverless 公众号 Serverless 是什么? Serverless 架构是不是就不要服务器了?回答这个问题,我们需要了解下 Serverless 是什么. ...

  3. Rclone使用教程 - 挂载Onedrive和谷歌网盘

    1. 介绍 Rclone 是一个用于多个云平台之间同步文件和目录的命令行工具,其支持多种运营商网盘. 官网网址:https://rclone.org 开源地址:https://github.com/n ...

  4. C#开发BIMFACE系列46 服务端API之离线数据包下载及结构详解

    BIMFACE二次开发系列目录     [已更新最新开发文章,点击查看详细] 在前一篇博客<C#开发BIMFACE系列45 服务端API之创建离线数据包>中通过调用接口成功的创建一个离线数 ...

  5. 题解 [BJOI2017]开车

    题目传送门 题目大意 有\(n\)个汽车和\(n\)个加油站,坐标分别为\(a_{1,2,...,n}\)和\(b_{1,2,...,n}\).每辆汽车会到一个加油站,求出最小移动距离之和.有\(m\ ...

  6. Ajax样例

    $.ajax({ url : "newsservlet",//请求地址 dataType : "json",//数据格式 type : "post&q ...

  7. vue基础-动态样式&表单绑定&vue响应式原理

    动态样式 作用:使用声明式变量来控制class和style的值 语法: :class/:style 注意:尽可能不要把动态class和静态class一起使用,原因动态class起作用的时间会比较晚,需 ...

  8. linux中文件查找、whereis、which、输出命令

    1.文件查找(find):find是最常⻅和最强⼤的查找命令 格式:find / -name  文件名,比如:find / -name mysql.  (1).模糊查找:*是代表所有的,?是代表⼀个字 ...

  9. Vue CLI 5 和 vite 创建 vue3.x 项目以及 Vue CLI 和 vite 的区别

    这几天进入 Vue CLI 官网,发现不能选择 Vue CLI 的版本,也就是说查不到 vue-cli 4 以下版本的文档. 如果此时电脑上安装了 Vue CLI,那么旧版安装的 vue 项目很可能会 ...

  10. Google Object detection配置与使用

    Google Object detection 前言: 本文记录了使用Google发布的Object detection(July 1st, 2019)接口,完成了对标注目标的检测.参考了很多博文,在 ...