洛谷 P6295 - 有标号 DAG 计数(生成函数+容斥+NTT)
看到图计数的题就条件反射地认为是不可做题并点开了题解……实际上这题以我现在的水平还是有可能能独立解决的(
首先连通这个条件有点棘手,我们尝试把它去掉。考虑这题的套路,我们设 \(f_n\) 表示 \(n\) 个点的有标号 DAG 个数,\(g_n\) 表示 \(n\) 个点的有标号且弱联通的 DAG 个数,那么根据 \(\exp\) 式子的计算方式我们可以列出 \(f,g\) 生成函数之间的 exp 关系,又因为这题带标号,所以有:
Trick 1. 对于有标号图连通图计数问题,我们可以先计算出不限制连通的方案数,这样再对求得的序列的 EGF 做一遍 \(\ln\) 就可以得到待求序列的 EGF。
应用到此题上,就是设 \(F(x)\) 表示 \(f\) 序列的 EGF,\(G(x)\) 表示 \(g\) 序列的 EGF,那么 \(F(x)=\exp(G(x))\),因此我们求出 \(F(x)\) 后一遍 \(\ln\) 即可还原出 \(G(x)\)。
考虑怎么求 \(F(x)\)。对于 DAG 有一个性质,就是剥掉它入度为 \(0\) 的点后仍是一个 DAG,因此我们考虑枚举入度为 \(0\) 的点集 \(S\),但是这个点集很难恰好就是入度为 \(0\) 的点。所以我们可以考虑:
Trick 2. 对于 DAG 计数,我们可以考虑枚举其中入度为 \(0\) 的点集 \(S\) 并计算出剩余部分的方案数,但是这样会算重,因此需容斥,对于一个 \(S\) 而言其容斥系数就是 \((-1)^{|S|-1}\)。
因此我们枚举 \(S\) 的大小,有
\]
其中 \(2^{j(n-j)}\) 表示在钦定的入度为 \(0\) 的点与剩余点之间连边的方案数。
诶呀,这里 \(2^{j(i-j)}\) 既涉及 \(i\) 又涉及 \(j\),怎么办呢?
Trick 3. \(2^{i-j}=2^{\binom{i}{2}}·\dfrac{1}{2^{\binom{j}{2}}}·\dfrac{1}{2^{\binom{i-j}{2}}}\),这样我们可以将原本与 \(i,j\) 都有关的东西拆成只与 \(i,j,i-j\) 有关的项,方便卷积。
因此
\]
整理一下
\]
到这里,式子已经可以写成分治 FFT 的形式了,可以分治 FFT 求解,时间复杂度 2log。不过注意到咱们的分治 FFT 与求逆是紧密相连的,许多分治 FFT 的题都可以写成求逆的形式,此题也不例外。设
\]
\]
那么有 \(P(x)=P(x)Q(x)+1\),移个项可得 \(P(x)=\dfrac{1}{1-Q(x)}\)。\(1-Q(x)\) 常数项显然不为 \(0\),因此一遍求逆即可搞定 \(P(x)\),也可进而求出 \(F,G\)。
时间复杂度 \(n\log n\)。
const int pr=3;
const int ipr=332748118;
const int MAXP=1<<18;
const int INV2=MOD+1>>1;
const int PHI=MOD-1;
int fac[MAXP+5],ifac[MAXP+5],inv[MAXP+5];
void init_fac(int n){
for(int i=(fac[0]=ifac[0]=inv[0]=inv[1]=1)+1;i<=n;i++) inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i-1]*inv[i]%MOD;
}
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int rev[MAXP+5];
void NTT(vector<int> &a,int len,int type){
int lg=31-__builtin_clz(len);
for(int i=0;i<len;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<lg-1);
for(int i=0;i<len;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int i=2;i<=len;i<<=1){
int W=qpow((type<0)?ipr:pr,(MOD-1)/i);
for(int j=0;j<len;j+=i){
for(int k=0,w=1;k<(i>>1);k++,w=1ll*w*W%MOD){
int X=a[j+k],Y=1ll*w*a[(i>>1)+j+k]%MOD;
a[j+k]=(X+Y)%MOD;a[(i>>1)+j+k]=(X-Y+MOD)%MOD;
}
}
} if(!~type){
int ivn=qpow(len,MOD-2);
for(int i=0;i<len;i++) a[i]=1ll*a[i]*ivn%MOD;
}
}
vector<int> conv(vector<int> a,vector<int> b){
int LEN=1;while(LEN<a.size()+b.size()) LEN<<=1;
a.resize(LEN,0);b.resize(LEN,0);NTT(a,LEN,1);NTT(b,LEN,1);
for(int i=0;i<LEN;i++) a[i]=1ll*a[i]*b[i]%MOD;
NTT(a,LEN,-1);return a;
}
vector<int> getinv(vector<int> a,int len){
vector<int> b(len,0);b[0]=qpow(a[0],MOD-2);
for(int i=2;i<=len;i<<=1){
vector<int> c(b.begin(),b.begin()+(i>>1));
vector<int> d(a.begin(),a.begin()+i);
c=conv(conv(c,c),d);
for(int j=0;j<i;j++) b[j]=(2ll*b[j]-c[j]+MOD)%MOD;
} return b;
}
vector<int> direv(vector<int> a,int len){
vector<int> b(len,0);
for(int i=1;i<len;i++) b[i-1]=1ll*i*a[i]%MOD;
return b;
}
vector<int> inter(vector<int> a,int len){
vector<int> b(len,0);
for(int i=1;i<len;i++) b[i]=1ll*inv[i]*a[i-1]%MOD;
return b;
}
vector<int> getln(vector<int> a,int len){
vector<int> _a=direv(a,len),b=getinv(a,len);
b=conv(b,_a);b=inter(b,len);return b;
}
int main(){
init_fac(MAXP);vector<int> f(MAXP/2),g(MAXP/2);
for(int i=1;i<MAXP/2;i++){
int val=1ll*ifac[i]*qpow(INV2,1ll*i*(i-1)/2%PHI)%MOD;
if(i&1) g[i]=MOD-val;else g[i]=val;
} (g[0]+=1)%=MOD;f=getinv(g,MAXP/2);
// for(int i=0;i<MAXP/2;i++) printf("%d\n",g[i]);
for(int i=0;i<MAXP/2;i++) f[i]=1ll*f[i]*qpow(2,1ll*i*(i-1)/2%PHI)%MOD;
f=getln(f,MAXP/2);int n;scanf("%d",&n);
for(int i=1;i<=n;i++) printf("%d\n",1ll*f[i]*fac[i]%MOD);
return 0;
}
洛谷 P6295 - 有标号 DAG 计数(生成函数+容斥+NTT)的更多相关文章
- 洛谷P5206 [WC2019] 数树(生成函数+容斥+矩阵树)
题面 传送门 前置芝士 矩阵树,基本容斥原理,生成函数,多项式\(\exp\) 题解 我也想哭了--orz rqy,orz shadowice 我们设\(T1,T2\)为两棵树,并定义一个权值函数\( ...
- P6295 有标号 DAG 计数
P6295 有标号 DAG 计数 题意 求 \(n\) 个点有标号弱联通 DAG 数量. 推导 设 \(f_i\) 表示 \(i\) 个点有标号 DAG 数量(不保证弱联通),有: \[f(i)=\s ...
- 有标号DAG计数(生成函数)
有标号DAG计数(生成函数) luogu 题解时间 首先考虑暴力,很容易得出 $ f[ i ] = \sum\limits_{ j = 1 }^{ i } ( -1 )^{ j - 1 } \bino ...
- 【洛谷5644】[PKUWC2018] 猎人杀(容斥+生成函数+分治NTT)
点此看题面 大致题意: 有\(n\)个人相互开枪,每个人有一个仇恨度\(a_i\),每个人死后会开枪再打死另一个还活着的人,且第一枪由你打响.设当前剩余人仇恨度总和为\(k\),则每个人被打中的概率为 ...
- POJ 1741.Tree and 洛谷 P4178 Tree-树分治(点分治,容斥版) +二分 模板题-区间点对最短距离<=K的点对数量
POJ 1741. Tree Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 34141 Accepted: 11420 ...
- 洛谷P4707 重返现世 [DP,min-max容斥]
传送门 前置知识 做这题前,您需要认识这个式子: \[ kthmax(S)=\sum_{\varnothing\neq T\subseteq S}{|T|-1\choose k-1} (-1)^{|T ...
- 洛谷P4707 重返现世(扩展MinMax容斥+dp)
传送门 我永远讨厌\(dp.jpg\) 前置姿势 扩展\(Min-Max\)容斥 题解 看纳尔博客去→_→ 咱现在还没搞懂为啥初值要设为\(-1\)-- //minamoto #include< ...
- 洛谷 P4336 黑暗前的幻想乡 —— 容斥+矩阵树定理
题目:https://www.luogu.org/problemnew/show/P4336 当作考试题了,然而没想出来,呵呵. 其实不是二分图完美匹配方案数,而是矩阵树定理+容斥... 就是先放上所 ...
- 洛谷 P4707 - 重返现世(扩展 Min-Max 容斥+背包)
题面传送门 首先看到这种求形如 \(E(\max(T))\) 的期望题,可以套路地想到 Min-Max 容斥 \(\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T| ...
随机推荐
- c语言中一条竖线是什么符号?
"|"在C语言中表示按位或,是双目运算符.其功能是参与运算的两数各对应的二进位(也就是最后一位)相或.只要对应的二个二进位有一个为1时,结果位就为1.参与运算的两个数均以补码出现. ...
- nmap常用命令汇总
nmap常用命令 选项 解释 使用举例 举例说明 Nmap主机发现 -sP Ping扫描 -P0 无Ping扫描 -PS TCP SYN Ping扫描 -PA TCP ACK ...
- 让全链路压测变得更简单!Takin2.0重磅来袭!
自Takin社区版1.0发布两个多月以来,有很多测试同学陆续在各自的工作中运用了起来,其中包括金融.电商.物流.出行服务等行业.这个过程中我们收到了很多同学的反馈建议,同时也了解到很多同学在落地全链路 ...
- Java编程开发学习路线图(附所有免费课程+在线自测)
转自 https://yq.aliyun.com/articles/134286?spm=5176.100239.0.0.1UfveS 摘要: 长期以来,Java一直占据TIOBE编程语言排行版第一 ...
- Go 语言实现 gRPC 的发布订阅模式,REST 接口和超时控制
原文链接: 测试小姐姐问我 gRPC 怎么用,我直接把这篇文章甩给了她 上篇文章 gRPC,爆赞 直接爆了,内容主要包括:简单的 gRPC 服务,流处理模式,验证器,Token 认证和证书认证. 在多 ...
- FastAPI 学习之路(三十四)数据库多表操作
之前我们分享的是基于单个的数据库表的操作,我们在设计数据库的时候也设计了跨表,我们可以看下数据库的设计. class User(Base): __tablename__ = "users&q ...
- 【学习笔记】Vizing 定理
图染色问题的经典结论 定义 称一个边染色方案合法当且仅当每个顶点连出的所有边的颜色都互不相同,如果此时出现了 \(k\) 个颜色那么称该方案是图的一组 \(k\) 染色 一张无向图的边着色数为最小的 ...
- STM32中AD采样的三种方法分析
在进行STM32F中AD采样的学习中,我们知道AD采样的方法有多种,按照逻辑程序处理有三种方式,一种是查询模式,一种是中断处理模式,一种是DMA模式.三种方法按照处理复杂方法DMA模式处理模式效率最高 ...
- 实验7:基于REST API的SDN北向应用实践
一.实验目的 1.能够编写程序调用OpenDaylight REST API实现特定网络功能: 2.能够编写程序调用Ryu REST API实现特定网络功能. 二.实验环境 下载虚拟机软件Oracle ...
- copy-list-with-random-pointer leetcode C++
A linked list is given such that each node contains an additional random pointer which could point t ...