[loj3156]回家路线
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define k(i) -2*A*e[i].q
5 #define b(i) (dp[i]+A*e[i].q*e[i].q-B*e[i].q)
6 struct ji{
7 int x,y,p,q;
8 }e[N];
9 vector<int>v[N];
10 set<pair<int,int> >s;
11 int n,m,A,B,C,ans,sz[N],dp[N];
12 bool cmp(ji x,ji y){
13 return x.p<y.p;
14 }
15 double point(int x,int y){
16 if (k(x)==k(y)){
17 if (b(x)==b(y))return 0;
18 if (b(x)<b(y))return 0x3f3f3f3f;
19 return -0x3f3f3f3f;
20 }
21 return 1.0*(b(y)-b(x))/(k(x)-k(y));
22 }
23 void add(int x){
24 int k=e[x].y;
25 while ((sz[k]>1)&&(point(v[k][sz[k]-2],v[k][sz[k]-1])>point(v[k][sz[k]-1],x))){
26 v[k].erase(--v[k].end());
27 sz[k]--;
28 }
29 v[k].push_back(x);
30 sz[k]++;
31 }
32 int query(int x){
33 int k=e[x].x;
34 if (!sz[k])return 0x3f3f3f3f;
35 while ((sz[k]>1)&&(point(v[k][0],v[k][1])<e[x].p)){
36 v[k].erase(v[k].begin());
37 sz[k]--;
38 }
39 return k(v[k][0])*e[x].p+b(v[k][0]);
40 }
41 int main(){
42 freopen("route.in","r",stdin);
43 freopen("route.out","w",stdout);
44 scanf("%d%d%d%d%d",&n,&m,&A,&B,&C);
45 for(int i=1;i<=m;i++)scanf("%d%d%d%d",&e[i].x,&e[i].y,&e[i].p,&e[i].q);
46 sort(e+1,e+m+1,cmp);
47 e[0].y=1;
48 s.insert(make_pair(0,0));
49 for(int i=1;i<=m;i++){
50 while ((s.size())&&((*s.begin()).first<=e[i].p)){
51 add((*s.begin()).second);
52 s.erase(s.begin());
53 }
54 dp[i]=query(i)+A*e[i].p*e[i].p+B*e[i].p+C;
55 s.insert(make_pair(e[i].q,i));
56 }
57 ans=0x3f3f3f3f;
58 for(int i=1;i<=m;i++)
59 if (e[i].y==n)ans=min(ans,dp[i]+e[i].q);
60 printf("%d",ans);
61 return 0;
62 }
[loj3156]回家路线的更多相关文章
- NOI2019 回家路线 DP
「NOI2019」回家路线 链接 loj 思路 f[i][j]第i个点,时间为j,暴力转移 复杂度O(m*t),好像正解是斜率优化,出题人太不小心了233 代码 #include <bits/s ...
- [NOI2019]回家路线
[NOI2019]回家路线 题目大意: 有\(n\)个站点,\(m\)趟车,每趟车在\(p_i\)时从\(x_i\)出发,\(q_i\)时到达\(y_i\). 若小猫共乘坐了\(k\)班列车,依次乘坐 ...
- P5468 [NOI2019]回家路线 斜率优化 dp
LINK:回家路线 (文化课 oi 双爆炸 对 没学上的就是我.(我错了不该这么丧的. 不过还能苟住一段时间.当然是去打NOI了 这道题去年同步赛的时候做过.不过这里再次提醒自己要认真仔细的看题目 不 ...
- 【LOJ3156】「NOI2019」回家路线
[题目链接] [点击打开链接] [题目概括] 现在有\(n\)个站点,\(m\)条火车路线,每一条货车路线都有一个起点站点.终点站点.开始时间和到站时间. 对于一直在起点\(1\)的人,终点是\(n\ ...
- LOJ 3156: 「NOI2019」回家路线
题目传送门:LOJ #3156. 题意简述: 有一张 \(n\) 个点 \(m\) 条边的有向图,边有两个权值 \(p_i\) 和 \(q_i\)(\(p_i<q_i\))表示若 \(p_i\) ...
- 【题解】Luogu P5468 [NOI2019]回家路线
原题传送门 前置芝士:斜率优化 不会的可以去杜神博客学 这道题我考场上只会拆点跑最短路的70pts做法 后来回家后发现错误的爆搜都能拿满分(刀片) 还有很多人\(O(mt)\)过的,还是要坚持写正解好 ...
- [NOI2019]回家路线(最短路,斜率优化)
终于把这鬼玩意弄完了-- 为什么写的这么丑-- (顺便吐槽 routesea) 最短路的状态很显然:\(f[i]\) 表示从第 \(i\) 条线下来的最小代价. 首先明显要把那个式子拆开.直觉告诉我们 ...
- 【斜率优化】【P5468】 [NOI2019]回家路线
Description 给定 \(n\) 点,这 \(n\) 个点由 \(m\) 班列车穿插连结.对于第 \(i\) 班列车,会在 \(p_i\) 时刻从 \(x_i\) 站点出发开向 \(y_i\) ...
- Luogu P5468 [NOI2019]回家路线 (斜率优化、DP)
题目链接: (luogu) https://www.luogu.org/problemnew/show/P5468 题解: 爆long long毁一生 我太菜了,这题这么简单考场上居然没想到正解-- ...
随机推荐
- 从零入门 Serverless | 教你使用 IDE/Maven 快速部署 Serverless 应用
作者 | 许成铭(竞霄) 阿里云开发工程师 SAE 应用部署方式 1. SAE 概述 首先,简单介绍一下 SAE.SAE 是一款面向应用的 Serverless PaaS 平台,支持 Spring C ...
- 学校选址(ArcPy实现)
一.背景 合理的学校空间位置布局,有利于学生的上课与生活.学校的选址问题需要考虑地理位置.学生娱乐场所配套.与现有学校的距离间隔等因素,从总体上把握这些因素能够确定出适宜性比较好的学校选址区. 二.目 ...
- Miller Rabin 详解 && 小清新数学题题解
在做这道题之前,我们首先来尝试签到题. 签到题 我们定义一个函数:\(qiandao(x)\) 为小于等于 x 的数中与 x 不互质的数的个数.要求 \(\sum\limits _{i=l}^r qi ...
- 【数据结构与算法Python版学习笔记】图——强连通分支
互联网 我们关注一下互联网相关的非常巨大图: 由主机通过网线(或无线)连接而形成的图: 以及由网页通过超链接连接而形成的图. 网页形成的图 以网页(URI作为id)为顶点,网页内包含的超链接作为边,可 ...
- sql递归查询部门数据
1 with cte as 2 ( 3 select a.DepartCode,a.DepartName,a.ParentDepartCode from tbDeparts a where Paren ...
- BUAA 2020 软件工程 热身作业
BUAA 2020 软件工程 热身作业 Author: 17373051 郭骏 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 第一次作业-热身! ...
- 修改git仓库的远程地址
在我们开发的过程中,代码一般是由 git 来管理的,但有些时候我们的 git 仓库的地址可能发生了变换,比如我们使用的 gitLab 地址发生了变化,那么这个时候如何来将原项目的 git 地址进行修改 ...
- ESD
Reverse standoff voltage是保护二极管的反向工作电压, 在这个电压, 二极管是不工作的. Breakdown voltage 是二极管的击穿电压, 超过这个电压后, 二极管迅速反 ...
- 【做题记录】CF1451E2 Bitwise Queries (Hard Version)
CF1451E2 Bitwise Queries (Hard Version) 题意: 有 \(n\) 个数( \(n\le 2^{16}\) ,且为 \(2\) 的整数次幂,且每一个数都属于区间 \ ...
- OpenWrt编译问题记录
错误一.config.status: error: cannot find input file: `xmetadataretriever/Makefile.in' configure: creati ...