[atARC111F]Do you like query problems
(以下修改指1和2类操作,询问指3类操作,操作指修改或询问)
注意到总方案数确定,那么不妨求出答案的期望,再乘上方案数即为答案
(这里从期望的角度考虑只是为了描述方便,并没有太大的实际意义)
设$E(t)$为对某一个位置执行$t$次修改(指对该点)后该位置的期望,通过概率去求,即设$P(t,i)$表示经过$t$次修改后为$i$的概率,那么$E(t)=\sum_{i=0}^{m-1}i\cdot P(t,i)$
初始有$P(0,0)=1$,接下来有$P(t,i)=\frac{\sum_{j=0}^{m-1}P(t,i)+mP(t-1,i)}{2m}=\frac{1}{2m}+\frac{P(t-1,i)}{2}=\frac{1}{m}-\frac{1}{m2^{t}}$($P(t,0)$系数为0,可以不考虑),代入$E(t)$,即可得$E(t)=\sum_{i=1}^{m-1}\frac{i}{m}-\frac{i}{m2^{t}}=(1-\frac{1}{2^{t}})\frac{m-1}{2}$
记$p_{i}=\frac{i(n-i+1)}{n+1\choose 2}$,即第$i$个位置被操作区间包含的概率,那么当经过$t$次修改(指全局)后,即可得第$i$个位置的期望为$h_{t,i}=\frac{m-1}{2}\sum_{j=0}^{t}{t\choose j}p_{i}^{j}(1-p_{i})^{t-j}(1-\frac{1}{2^{j}})=\frac{m-1}{2}(1-(1-\frac{p_{i}}{2})^{t})$(二项式定理合并)
(为了方便,以下记$P=1-\frac{p_{i}}{2}$,即$h_{t,i}=\frac{m-1}{2}(1-P^{t})$)
再加入查询,即经过$t$次操作后第$i$个位置的期望$g_{t,i}=\frac{\sum_{j=0}^{t}{t\choose j}(2m)^{j}h_{j,i}}{(2m+1)^{t}}$(枚举修改次数),将$h_{t,i}$代入后并化简,即可得$g_{t,i}=\frac{m-1}{2}(1-(\frac{2mP+1}{2m+1})^{t})$
考虑第$i$个位置对答案的贡献的期望,即$f_{i}=\frac{p_{i}}{2m+1}\sum_{j=1}^{q}g_{j-1,i}$(枚举产生贡献的操作编号,需要是询问且包含$i$),同样即可得$f_{i}=\frac{p_{i}(m-1)}{2(2m+1)}(q-S(\frac{2mP+1}{2m+1}))$(其中$S(k)=\sum_{i=0}^{q-1}k^{i}=\frac{k^{q}-1}{k-1}$)
最终答案即为$\sum_{i=1}^{n}f_{i}$,时间复杂度由于快速幂,需要$o(n\log_{2}n)$
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define mod 998244353
4 int n,m,q,ans;
5 int ksm(int n,int m){
6 int s=n,ans=1;
7 while (m){
8 if (m&1)ans=1LL*ans*s%mod;
9 s=1LL*s*s%mod;
10 m>>=1;
11 }
12 return ans;
13 }
14 int inv(int k){
15 return ksm(k,mod-2);
16 }
17 int S(int k){
18 if (k==1)return q;
19 return 1LL*(ksm(k,q)+mod-1)*inv(k-1)%mod;
20 }
21 int main(){
22 scanf("%d%d%d",&n,&m,&q);
23 int s=inv(2*m+1);
24 for(int i=1;i<=n;i++){
25 int p=1LL*i*(n-i+1)%mod*inv(n)%mod*inv(n+1)%mod;
26 int P=mod+1-p,ss=S((2LL*m*P+1)%mod*s%mod);
27 ans=(ans+1LL*p*(m-1)%mod*s%mod*(q+mod-ss))%mod;
28 }
29 s=1LL*n*(n+1)/2%mod*(m+m+1)%mod;
30 ans=1LL*ans*ksm(s,q)%mod;
31 printf("%d",ans);
32 }
[atARC111F]Do you like query problems的更多相关文章
- hdu 5057 Argestes and Sequence(分块算法)
Argestes and Sequence Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- hdu5057 Argestes and Sequence 分块
Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): Accepted Submiss ...
- Codeforces Round #260 (Div. 1) D. Serega and Fun 分块
D. Serega and Fun Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/455/pro ...
- Caching Best Practices--reference
reference:http://java.dzone.com/articles/caching-best-practices There is an irresistible attraction ...
- hdu 5057 Argestes and Sequence
Argestes and Sequence Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- BestCoder Round #11 (Div. 2) 题解
HDOJ5054 Alice and Bob Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- HDU5057(分块)
Argestes and Sequence Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- CodeForces - 455D
Serega loves fun. However, everyone has fun in the unique manner. Serega has fun by solving query pr ...
- Neo4j 文档
Graph Fundamentals 基础 Basic concepts to get you going. A graph database can store any kind of data u ...
随机推荐
- 题解 [CTSC2006]歌唱王国
题目传送门 Desctiption 见题面. Solution 人类智慧... 考虑这样一个赌博游戏,现在有一个猴子,它随机从 \(1\sim n\) 中选一个打出来.现在有若干个赌徒,他们一开始都有 ...
- Java(6)流程控制语句中分支结构if与switch
作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15201528.html 博客主页:https://www.cnblogs.com/testero ...
- linux性能优化基础——iommu相关配置
此篇文档介绍了IOMMU相关的信息: https://blog.chaosjohn.com/Check-VT-D-or-IOMMU-under-Linux.html iommu和vt-d都是io半虚拟 ...
- find+xargs+sed批量替换
写代码时经常遇到要把 .c 和 .h的文件中的某些内容全部替换的情况,用sourceinsight 进行全局的查找是一个方法,但是sourceinsight只能替换一个文件中的字符串,不能同时替换多 ...
- Pycharm无法打开,双击没反应
以下方案皆为引用,仅供参考. 方案一: 1.先声明一下,这种解决方法适用于任何版本的永久破解启动不了的情况(包括:2019版本的)2.下面直接切入正题之所以我们破解之后,不能正常启动的原因有两种:① ...
- 初识HTML01
什么是页面? 页面是基于浏览器的应用程序 页面是数据展示的载体,由浏览器和服务器共同执行产物. 浏览器的功能 向服务器发送用户请求指令 接收并解析数据展示给用户 服务器的功能 存储页面资源 处理并响应 ...
- [no code][scrum meeting] Beta 12
$( "#cnblogs_post_body" ).catalog() 例会时间:5月27日11:30,主持者:乔玺华 一.工作汇报 人员 昨日完成任务 明日要完成的任务 乔玺华 ...
- 2021.8.18 NKOJ周赛总结
两个字总结:安详 T1: NKOJ-6179 NP问题 问题描述: p6pou在平面上画了n个点,并提出了一个问题,称为N-Points问题,简称NP问题. p6pou首先在建立的平面直角坐标系,并标 ...
- Vulnstack内网靶场3
Vulnstack内网靶场3 (qiyuanxuetang.net) 环境配置 打开虚拟机镜像为挂起状态,第一时间进行快照,部分服务未做自启,重启后无法自动运行. 挂起状态,账号已默认登陆,cento ...
- AtCoder Grand Contest 055题解
我太菜啦!!!md,第一题就把我卡死了...感觉对构造题不会再爱了... A - ABC Identity 先来看这个题吧,题意就是给定你一个字符串,让你将这个字符串最多分成6个子串,使得每个字符都在 ...