(以下修改指1和2类操作,询问指3类操作,操作指修改或询问)

注意到总方案数确定,那么不妨求出答案的期望,再乘上方案数即为答案

(这里从期望的角度考虑只是为了描述方便,并没有太大的实际意义)

设$E(t)$为对某一个位置执行$t$次修改(指对该点)后该位置的期望,通过概率去求,即设$P(t,i)$表示经过$t$次修改后为$i$的概率,那么$E(t)=\sum_{i=0}^{m-1}i\cdot P(t,i)$

初始有$P(0,0)=1$,接下来有$P(t,i)=\frac{\sum_{j=0}^{m-1}P(t,i)+mP(t-1,i)}{2m}=\frac{1}{2m}+\frac{P(t-1,i)}{2}=\frac{1}{m}-\frac{1}{m2^{t}}$($P(t,0)$系数为0,可以不考虑),代入$E(t)$,即可得$E(t)=\sum_{i=1}^{m-1}\frac{i}{m}-\frac{i}{m2^{t}}=(1-\frac{1}{2^{t}})\frac{m-1}{2}$

记$p_{i}=\frac{i(n-i+1)}{n+1\choose 2}$,即第$i$个位置被操作区间包含的概率,那么当经过$t$次修改(指全局)后,即可得第$i$个位置的期望为$h_{t,i}=\frac{m-1}{2}\sum_{j=0}^{t}{t\choose j}p_{i}^{j}(1-p_{i})^{t-j}(1-\frac{1}{2^{j}})=\frac{m-1}{2}(1-(1-\frac{p_{i}}{2})^{t})$(二项式定理合并)

(为了方便,以下记$P=1-\frac{p_{i}}{2}$,即$h_{t,i}=\frac{m-1}{2}(1-P^{t})$)

再加入查询,即经过$t$次操作后第$i$个位置的期望$g_{t,i}=\frac{\sum_{j=0}^{t}{t\choose j}(2m)^{j}h_{j,i}}{(2m+1)^{t}}$(枚举修改次数),将$h_{t,i}$代入后并化简,即可得$g_{t,i}=\frac{m-1}{2}(1-(\frac{2mP+1}{2m+1})^{t})$

考虑第$i$个位置对答案的贡献的期望,即$f_{i}=\frac{p_{i}}{2m+1}\sum_{j=1}^{q}g_{j-1,i}$(枚举产生贡献的操作编号,需要是询问且包含$i$),同样即可得$f_{i}=\frac{p_{i}(m-1)}{2(2m+1)}(q-S(\frac{2mP+1}{2m+1}))$(其中$S(k)=\sum_{i=0}^{q-1}k^{i}=\frac{k^{q}-1}{k-1}$)

最终答案即为$\sum_{i=1}^{n}f_{i}$,时间复杂度由于快速幂,需要$o(n\log_{2}n)$

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define mod 998244353
4 int n,m,q,ans;
5 int ksm(int n,int m){
6 int s=n,ans=1;
7 while (m){
8 if (m&1)ans=1LL*ans*s%mod;
9 s=1LL*s*s%mod;
10 m>>=1;
11 }
12 return ans;
13 }
14 int inv(int k){
15 return ksm(k,mod-2);
16 }
17 int S(int k){
18 if (k==1)return q;
19 return 1LL*(ksm(k,q)+mod-1)*inv(k-1)%mod;
20 }
21 int main(){
22 scanf("%d%d%d",&n,&m,&q);
23 int s=inv(2*m+1);
24 for(int i=1;i<=n;i++){
25 int p=1LL*i*(n-i+1)%mod*inv(n)%mod*inv(n+1)%mod;
26 int P=mod+1-p,ss=S((2LL*m*P+1)%mod*s%mod);
27 ans=(ans+1LL*p*(m-1)%mod*s%mod*(q+mod-ss))%mod;
28 }
29 s=1LL*n*(n+1)/2%mod*(m+m+1)%mod;
30 ans=1LL*ans*ksm(s,q)%mod;
31 printf("%d",ans);
32 }

[atARC111F]Do you like query problems的更多相关文章

  1. hdu 5057 Argestes and Sequence(分块算法)

    Argestes and Sequence Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  2. hdu5057 Argestes and Sequence 分块

    Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): Accepted Submiss ...

  3. Codeforces Round #260 (Div. 1) D. Serega and Fun 分块

    D. Serega and Fun Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/455/pro ...

  4. Caching Best Practices--reference

    reference:http://java.dzone.com/articles/caching-best-practices There is an irresistible attraction ...

  5. hdu 5057 Argestes and Sequence

    Argestes and Sequence Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  6. BestCoder Round #11 (Div. 2) 题解

    HDOJ5054 Alice and Bob Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  7. HDU5057(分块)

    Argestes and Sequence Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  8. CodeForces - 455D

    Serega loves fun. However, everyone has fun in the unique manner. Serega has fun by solving query pr ...

  9. Neo4j 文档

    Graph Fundamentals 基础 Basic concepts to get you going. A graph database can store any kind of data u ...

随机推荐

  1. linux 安装libreOffice

    linux 安装libreOffice 第一种方式:通过yum install libreoffice* 安装,但在使用docx文档转化为pdf的过程中,发现有些表格样式出现变形,因此采用如下方式安装 ...

  2. 华为Awareness kit,您旅途路上的超智能管家

    前言 前段时间看了一部纪录片<中国游客在巴黎>,讲述了外国人眼中"中国式旅游":热衷景点打卡,沉迷拍照留念,无暇仔细欣赏:留足时间,买买买,不能枉此行.网友总结中国式旅 ...

  3. 洛谷4455 [CQOI2018]社交网络 (有向图矩阵树定理)(学习笔记)

    sro_ptx_orz qwq算是一个套路的记录 对于一个有向图来说 如果你要求一个外向生成树的话,那么如果存在一个\(u\rightarrow v\)的边 那么\(a[u][v]--,a[v][v] ...

  4. 轻量级 Java 基础开发框架,Solon & Solon Cloud 1.5.48 发布

    Solon 已有120个生态扩展插件,此次更新主要为细节打磨: 增加 solon.serialization,做为序列化的基础插件 优化 所有Json序列化插件,使之可方便定制类型序列化 public ...

  5. 自定义Push/Pop和Present/Dismiss转场

    项目概述 iOS中最常见的动画无疑是Push和Pop的转场动画了,其次是Present和Dismiss的转场动画. 如果我们想自定义这些转场动画,苹果其实提供了相关的API,在自定义转场之前,我们需要 ...

  6. docker逃逸漏洞复现(CVE-2019-5736)

    漏洞概述 2019年2月11日,runC的维护团队报告了一个新发现的漏洞,SUSE Linux GmbH高级软件工程师Aleksa Sarai公布了影响Docker, containerd, Podm ...

  7. 深入理解和运用Pandas的GroupBy机制——理解篇

    GroupBy是Pandas提供的强大的数据聚合处理机制,可以对大量级的多维数据进行透视,同时GroupBy还提供强大的apply函数,使得在多维数据中应用复杂函数得到复杂结果成为可能(这也是个人认为 ...

  8. Envoy实现.NET架构的网关(四)集成IdentityServer4实现OAuth2认证

    什么是OAuth2认证 简单说,OAuth 就是一种授权机制.数据的所有者告诉系统,同意授权第三方应用进入系统,获取这些数据.系统从而产生一个短期的进入令牌(token),用来代替密码,供第三方应用使 ...

  9. sort命令的学习与实践

    一.用man sort 查看sort的帮助文档 *sort将文件的每一行作为一个单位,相互比较,比较原则是从首字符向后,依次按ASCII码值进行比较,最后将他们按升序输出. [rocrocket@ro ...

  10. Luogu P3758 [TJOI2017]可乐 | 矩阵乘法

    题目链接 让我们先来思考一个问题,在一张包含$n$个点的图上,如何求走两步后从任意一点$i$到任意一点$j$的方案数. 我们用$F_p(i,j)$来表示走$p$步后从$i$到$j$的方案数,如果存储原 ...