题解—P2511 [HAOI2008]木棍分割
这道题第一眼直接一个二分板子把第一问解决掉,然后主要是统计方案。
其实这个方程还不算难推,只要推出来朴素 \(dp\) ,之后的一步一步也很顺理成章,所以这种题主要看能不能静下心来慢慢做。
solution
第一问就是一个 Monthly Expense S ,本片题解只说第二问。
朴素 \(dp\)
也没几个变量,所以很轻松的可以设计状态 \(f[i][j]\) 表示当前到第 \(i\) 段,一共分了 \(j\) 次的方案数。
我们思考如何来表示把几段放在一大段里面,也就可以推出来转移方程。
如果我们新开一段,那么 \(f[i][j] += f[i-1][j-1]\)
如果我们把这段和上一段拼到一起,那么 \(f[i][j] += f[i - 1][j - 1]\)
以此类推,规律很显然,所以可以写出 \(dp\) 方程。
\]
能从 \(k\) 转移的要求是从 \(k\) 加到 \(i\) 的木棍长度不大于第一问的答案 。
其实 \(dp\) 方程没有那么难推,只要设计好状态分情况讨论就行了。
时间复杂度是 \(O(n^2m)\) ,因为 \(k\) 需要枚举。
显然时间空间都不行,所以考虑优化。
空间优化
这个不难想到,因为 \(f [i][j]\) 只能有 \(f[k][j-1]\) 转移而来,所以我们调换一下维数顺序和枚举顺序就行,用第一维来表示分了 \(i\) 次,第二维来表示到第 \(i\) 段。
然后就能滚动数据优化了,空间问题就解决了(其实开short
也勉强不爆)
时间优化
首先,我们可以发现,对于一个 \(f[i][j]\) ,能转移到他的 \(f[i-1][k]\) 中的 \(k\) 肯定是连续的一段,并且最小的 \(k\) 的值之和 \(i\)有关。
所以我们可以考虑预处理出来 \(k\) 的值,然后直接一个前缀和解决问题。
不过处理 \(k\) 需要 \(n^2\) ,怎么办?
不难发现随着 \(i\) 的增加, \(k\) 是单调不降的,弄个单调指针就行了,均摊 \(O(n)\) 。
所以最后复杂度是 \(O(nm+n)=O(nm)\)
code
(放这么丑的代码真是对不起大家的眼睛啦)
#include <cstring>
#include <algorithm>
#include <cstdio>
#define mp make_pair
#define R register int
#define int long
#define printf Ruusupuu = printf
int Ruusupuu ;
using namespace std ;
typedef long long L ;
typedef long double D ;
typedef unsigned long long G ;
typedef pair< int , int > PI ;
const int N = 5e4 + 10 ;
const int M = 1e3 + 10 ;
const int P = 1e4 + 7 ;
inline int read(){
int w = 0 ; bool fg = 0 ; char ch = getchar() ;
while( ch < '0' || ch > '9' ) fg |= ( ch == '-' ) , ch = getchar() ;
while( ch >= '0' && ch <= '9' ) w = ( w << 1 ) + ( w << 3 ) + ( ch ^ '0' ) , ch = getchar() ;
return fg ? -w : w ;
}
inline int J( int a , int b ){ return a + b >= P ? a + b - P : a + b ; }
inline int S( int a , int b ){ return a - b < 0 ? a - b + P : a - b ; }
int len [N] , n , m , mid , lside , rside , ans , pre [N] , f [3][N] , qz [3][N] , res ;
void sc(){
n = read() , m = read() ;
for( R i = 1 ; i <= n ; i ++ ) len [i] = read() , lside = max( lside , len [i] ) ;
}
bool check(){
int div = 0 , now = 0 ;
for( R i = 1 ; i <= n ; i ++ ){
if( now + len [i] > mid ) div ++ , now = 0 ;
now += len [i] ;
}// printf( "%ld %ld\n" , mid , div ) ;
return div <= m ;
}
void work(){
rside = (int) 5e7 + 10 , ans = 0 ;
while( lside <= rside ){
mid = ( lside + rside ) >> 1 ;
if( check() ) ans = mid , rside = mid - 1 ;
else lside = mid + 1 ;
} printf( "%ld " , ans ) ;
int now = 0 , ck = 0 ;
for( R i = 1 ; i <= n ; i ++ ){
now += len [i] ;
while( now > ans ) now -= len [ck ++] ;
pre [i] = ck - 2 ; //printf( "%ld\n" , pre [i] ) ;
}
f [0][0] = 1 ;
for( R i = 0 ; i <= n ; i ++ ) qz [0][i] = 1 ;
for( R i = 1 ; i <= m + 1 ; i ++ ){
for( R j = 1 ; j <= n ; j ++ ){
if( pre [j] == -2 ) f [i & 1][j] = qz [( i - 1 ) & 1][j - 1] ;
else f [i & 1][j] = S( qz [( i - 1 ) & 1][j - 1] , qz [( i - 1 ) & 1][pre [j]] ) ;
qz [i & 1][j] = J( qz [i & 1][j - 1] , f [i & 1][j] ) ;
// printf( "%ld %ld %ld %ld\n" , i , j , f [i & 1][j] , qz [i & 1][j] ) ;
}
for( R j = 0 ; j <= n ; j ++ ) f [( i - 1 ) & 1][j] = qz [( i - 1 ) & 1][j] = 0 ;
res = J ( res , f [i & 1][n] ) ;
}
printf( "%ld\n" , res ) ;
}
signed main(){
sc() ;
work() ;
return 0 ;
}
题解—P2511 [HAOI2008]木棍分割的更多相关文章
- 2021.12.06 P2511 [HAOI2008]木棍分割(动态规划)
2021.12.06 P2511 [HAOI2008]木棍分割(动态规划) https://www.luogu.com.cn/problem/P2511 题意: 有n根木棍, 第i根木棍的长度为 \( ...
- [洛谷P2511][HAOI2008]木棍分割
题目大意:有$n(n\leqslant5\times10^4)$根木棍,连续放在一起,把它们分成$m(\leqslant10^3)$段,要求使得最长的段最短,问最短的长度以及方案数 题解:要使得最长的 ...
- P2511 [HAOI2008]木棍分割
目录 Description Solution Code Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, ...
- Luogu P2511 [HAOI2008]木棍分割 二分+DP
思路:二分+DP 提交:3次 错因:二分写萎了,$cnt$记录段数但没有初始化成$1$,$m$切的次数没有$+1$ 思路: 先二分答案,不提: 然后有个很$naive$的$DP$: 设$f[i][j] ...
- luogu P2511 [HAOI2008]木棍分割
传送门 第一问是一道经典的二分,二分答案\(ans\),然后从前往后扫,判断要分成几段救星了 第二问设\(f_{i,j}\)表示前\(i\)个数分成\(j\)段,每段之和不超过第一问答案的方案,转移就 ...
- 【题解】HAOI2008木棍分割
对于这道题目的两问,第一问直接二分答案求出最短长度.关键在于第二问应当如何求:建立dp方程,dp[i][j]代表到第i个分界线,切了j次(强制在第i处切一刀.这样就不会对后面的状态产生影响).状态转移 ...
- BZOJ1044: [HAOI2008]木棍分割
1044: [HAOI2008]木棍分割 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1580 Solved: 567[Submit][Statu ...
- 【BZOJ1044】[HAOI2008]木棍分割(动态规划,贪心)
[BZOJ1044][HAOI2008]木棍分割(动态规划,贪心) 题面 BZOJ 洛谷 题解 第一问随便二分一下就好了,贪心\(check\)正确性显然. 第二问随便前缀和+单调队列优化一下\(dp ...
- 【BZOJ1044】[HAOI2008]木棍分割
[BZOJ1044][HAOI2008]木棍分割 题面 bzoj 洛谷 题解 第一问显然可以二分出来的. 第二问: 设\(dp[i][j]\)表示前\(i\)个,切了\(j\)组的方案数 发现每次转移 ...
随机推荐
- java001-java基础
基础数据类型 int--->Integer long--->Long float--->Float double--->Double boolean--->Boolean ...
- nginx+waf防火墙
1.官网下载nginx源码包(nginx-1.20.0.tar.gz) 新建nginx安装目录mkdir -p /opt/nginx新增nginx运行用户useradd -s /sbin/nol ...
- PLICP
介绍 PLICP相比较于普通ICP算法,使用点线之间的距离作为度量,最终找到一个最小化该度量的闭式解(解析解). 最优结果以平方的速度收敛.相比较于ICP,IDC,MBICP.PLICP更加准确,且需 ...
- 【Azure 应用服务】App Service服务无法启动,打开Kudu站点,App Service Editor 页面均抛出:The service is unavailable
问题描述 App Service 服务URL无法访问,进入门户中的Advanced Tools(Kudu).App Service Editor (Preview)等页面无法打开, 打开就出现 The ...
- 在docker for windows建立mssql容器后,ssms连接mssql出现错误号码18456的问题
在docker for windows建立mssql容器后,ssms连接mssql出现错误号码18456的问题 笔者提供一个可能会没考虑到的点. 请检查本机是否安装了mssql!!! 请检查本机的ms ...
- Cannot read property 'data' of undefined —— 小程序开发
由于疫情原因目前处于半下岗状态,在家的时候就研究起了小程序开发.由于是新手,所以总会遇到各种问题,顺便记录一下. wx.showModal({ title: '提示', content: '这是一个模 ...
- vulnhub-DC:3靶机渗透记录
准备工作 在vulnhub官网下载DC:1靶机www.vulnhub.com/entry/dc-3,312/ 导入到vmware 导入的时候遇到一个问题 解决方法: 点 "虚拟机" ...
- TS中 使用deprecated 实现对方法的迭代弃用
在日常开发中,我们会定义大量方法函数来提供给业务调用,可随着时间与业务的推进, 有些方法可能不切合当下需求, 或将被逐步废弃并替换到新的方法中, 例如 框架中 部分生命周期的废弃. 此时作为开发者就很 ...
- PHP 接受提交变量过滤类
Filter.class.php : 1 <?php 2 class Filter{ 3 4 /** 5 * 将\n转化为<br/> 6 * 7 * @param stri ...
- 数据结构和算法学习笔记十五:多路查找树(B树)
一.概念 1.多路查找树(multi-way search tree):所谓多路,即是指每个节点中存储的数据可以是多个,每个节点的子节点数也可以多于两个.使用多路查找树的意义在于有效降低树的深度,从而 ...