The Octane SDK includes the core library by acting as a wrapper for extraction, modifying, and the application of a Reader's Low Level Reader Protocol (LLRP) settings, as well as high-level control over Reader settings, tag query, and tag-write operation.

1. Environment

1.1. Device

  • down Octanesdk.zip, contains the libraries, technical reference.

1.2. Theory

1.2.1. Backscatter Power

the power is affected by the antenna design, impedance matching, and the changes in reflection coefficient as a function of tag modulator state.

Propagation effects such as absorption and scattering; Antenna effects such as impedance mismatch, polarization mismatch; Multipath propagation and undesired signals in the environment can combine with the primary backscatter.

1.2.2. RF Phase

the reader's transmit circuits, the tag's reflection characteristic, and the reader's receiver circuits.

  • Phase estimates should only be compared on a single antenna and channel. RF phase is a function of frequency and antenna path.
  • Gen2 UHF RFID employs a slotted-aloha media access scheme, which means that the order in which tags are inventoried will be random. The time between successive inventories of the same tag will depend on reader mode, tag population size, and environmental conditions (e.g. interference levels).

1.2.2.1. velocity
  • If two time-phase pairs are measured for the same tag, one at (t0, 0) and one at (t1, 1), the radial distance traversed by the tag is: assumes that the tag moves less than half a wavelength in the radial direction between observations (dRADIAL < $\lambd$/2).

1.2.3. Doppler Shift

Doppler frequency shift is the shift in frequency of the received signal at the reader due to relative motion between the reader and the tag.

1.2.4. Inventroy, Antenna Switching, and Frequency Hopping Effects
  • Phase estimates should only be compared on a single antenna and channel.

  • Gen2 UHF RFID employs a slotted-aloha media access scheme, which means that the order in which tags are inventoried will be random. The time between successive inventories of the same tag will depend on reader mode, tag population size, and environmental conditions (e.g. interference levels).

  • requirements for successful reading of a passive tag with the backscatter scheme:

    • the tag power(sensitivity) threshold Pts, minimum received power to turn on the RFID chip.
    • the reader sensitivity threshold Prs, the minimum level of the tag signal that the reader can detect and resolve.

    • the mac protocol for the C1G2 system is based on Slotted ALOHA, where each frame has a number of slots and each active tag will reply in a randomly selected slot per frame;
    • the reader powers up and transmits a continuous wave(CW) to energize the tags.

2. Setting Relative

2.1. Query Services

2.2. Command Service

2.4. Reading Type

  • Synchronously

the observed tag data is stored in Reader memory and a report of all observed tags is sent only when commanded by the client application;

// wait until the tag query has ended before sending the tag report
settings.Report.Mode=ReportMode.WaitForQuery;
Reader.ApplySettings(settings);
//Read tags for 5 seconds
TagReport tagReport=Reader.QueryTags(5)
  • Asynchronously

the reader report reach tag to the client application, as soon as it is observed.

//send a tag report for every tag read
settings.Report.Mode=ReportMode.Individual;
//assign the TagsReported handler, this specifies which function to call when tags reports are avaible;
Reader.TagsReport+=new EventHandler<TagsReportedEventArgs>(OnTagsReported);
Reader.Start();
//wait for the user to press enter
Console.WriteLine("Press enter when done.");
Console.ReadLine();
Reader.Stop();
Reader.Disconnect(); static void OnTagsReported(object sender, TagsReportedEventArgs args){
//This function is called asynchronously when tag reports are available,loop through each tag in the report and print the data
foreach(Tag tag in args.TagReport.Tags){
//Todo
}
}
  • using periodic trigger

During polling, the reader initiates a scan for tags for a specified period of time and then waits for a set period before scanning again, which is sufficient and reduces both network and RF congestion.

settings.Report.Mode=ReportMode.Individual;
// Reading tags for 5 seconds every 10 seconds
settings.AutoStart.Mode=AutoStartMode.Periodic;
settings.AutoStart.PeriodInMs=10000;
settings.AutoStop.Mode=AutoStopMode.duration;
settings.AutoStop.DurationInMs=5000;

2.5. Filter

2.5.1. SingleTag

using GEN 2 filtering, either EPC, User, TID or a combination of these to read certain tags based on their data;

  • to have all the tags in the read-zone and backscatter their data to the reader, then use filtering in the application layer.
  • configure the reader that it commands only tags matching the filter to response while the others will stay silent;
// setup a tag filter only the tags that match this filter will respond;
settings.Filters.Mode=TagFilterMode.OnlyFilter1;
//apply the filger to the EPC memory bank
settings.Filters.TagFilter1.MemoryBand=MemoryBank.Epc;
// start matching at address 0*20, since the first 32-bits of the EPC memory bank are the CRC and control bits;
settings.Filters.TagFilter1.BitPointer=0x20;
//our filter is 16-bits long(the first word of the EPC)
settings.Filters.TagFilter1.BitCount=16;
//only match tags with EPCs that start with 3008
settings.Filters.TagFilter1.TagMask="3008";
//include tags that match this filter, and alternatively,we could exlude tags that match the filter
settings.Filters.TagFilter1.FilterOp=TagFilterOp.Match;
2.5.2. User Memory

the Impinj Monza 4 tags offer up to 512 bits of user memory, query the user memory using exception handling.

//Define how we want to perform the read
ReadUserMemoryParams readParams=new ReadUserMemoryParams();
//use antenna #1
readParams.AntennaPortNumber=1;
//No access password required for this tag
readParams.AccessPassword=null;
//start reading from the base of user memory(address 0)
readParams.WordPointer=0;
//read 32 words of user memory(512 bits)
readParams.WordCount=32;
//read the first tag we see,or choose a specific tag by EPC or other identifier;
readParams.Target=null;
readParams.TimeoutInMs=5000;
//Perform the read and check the results
ReadUserMemoryResult result=Reader.ReadUserMemory(readParams);
if(result.ReadResult.Result==AccessResult.Success){
//todo
}
Reader.Disconnect();
2.5.2. Read Serialized TID
static string ReadTid(string epc){
//Read the TID memory bank
ReadTidMemoryParams readParams=new ReadTidMemoryParams();
// No password set
readParams.AccessPassword=null;
readParams.AntennaPortNUmber=0;
readParams.TargetTag=epc;
readParams.WordCount=2;
readParams.TimeoutInMs=5000;
ReadTidMemoryResult result=Reader.ReadTidMemory(readParams);
return result.ReadResult.ReadData;
}
settings.Report.IncludeAntennaPortNumber=true;
settings.Report.IncludeSerializedTid=true;
settings.Report.Mode=ReportMode.Individual;
Reader.ApplySettings(settings);
TagReport tagReport=Reader.QueryTags(5);
foreach(Tag tag in tagReport.Tags){
if(tag.IsSerialzedTidPresent){
tid=tag.SerializedTid;
}else{
tid=ReadTid(tag.Epc);
}
}
Reader.Disconnect();

2.6. Tag Access

covers modifying tag data including writing and locking of EPC, user memory and passwords, killing a tag;

  • program EPC
epcParams.NewEpc="new EPC";
ProgramEpcParams epcParams=new ProgramEpcParams();
ProgramEpcResult result=Reader.ProgramEpc(epcParams);
if(result.WriteResult.Result==AccessResult.Success){
TagReport report=Reader.QueryTags(2);
}
  • user memory
ProgramUserBlockParams writeParams=new ProgramUserBlockParams();
writeParams.NewUserBlock="new user data";
ProgramUserBlockResult result=Reader.ProgramUserBlock(writeParams);
if(result.WriteResult.Result==AccessResult.Success){
#pass;
}
  • Kill Tags
ProgramKillPasswordParams pwParams=new ProgramKillPasswordParams();pwParams.TargetTag=TARGET_TAG;pwParams.NewKillPassword=NEW_KILL_PW; #new kill passwordProgramKillPasswordResult pwResult=Reader.ProgramKillPassword(pwParams);if(pwResult.WriteResult.Result==AccessResult.Success){	#todo	KillTagParams killParmas=new KillTagParams();	killTagResult killResult=Reader.KillTag(killParams);	if(killResult.KillResult.Result==AccessResult.Success){	#todo	}}

3. GPIO

The inputs allow external devices to trigger the reader, like light sensors, motion detectors, pressure mats etc. The output allow the reader to affect external devices such as access gates, indicator lights, conveyors .etc.

Settings settings=Reader.QueryFactorySettings();settings.Report.IncludeAntennaPortNumber=true;settings.Report.Mode=ReportMode.Individual;// starting reading tags when GPI #1 goes highsettings.GPis[1].IsEnable=true;settings.GPis[1].DebounceInMs=50;settings.AutoStart.Mode=AutoStartMode.GpiTrigger;settings.AutoStart.GpiPortNumber=1;settings.AutoStart.GpiLevel=true;//stop reading tags when gpi #1 goes lowsettings.AutoStop.Mode=AutoStopMode.GpiTrigger;settings.AutoStop.GpiPortNUmber=1;settings.AutoStop.GpiLevel=false;reader.ApplySettings(settings);

4. Subscribe

  • Subscribe to reader events
Reader.GpiChanged+=new EventHandler<GpiChangedEventArgs>(OnGpiEvent);Reader.AntennaChanged+=new EventHandler<AntennaChangedEventArgs>(OnAntennaEvent);static void OnGpiEvent(object sender, GpiChangedEventArgs args){	//todo}static void OnAntennaEvent(object sender, AntennaChangedEventArgs args){	//Todo}
  • Power Ramp

find the lowest power level that still finds all tags, the transmit power is steadily increased.

FeatureSet features=Reader.QueryFeatureSet();minTx=features.TxPowers.Entries.First().Dbm;maxTx=features.TxPowers.Entries.Last().Dbm;for(double power=minTx; power<=maxTx; power+=1.0){	settings.Antennas[1].TxPowerInDbm=power;	Reader.ApplySettings(settings);	TagReport report=Reader.QueryTags(2);	foreach(Tag tag in report.Tags){		//todo	}}

5. Classes

5.1. methods

  • void Connect(string readerIp); void Disconnect(); void Start(); void Stop();
  • void ResumeEventsAndReport():
  • FeatureSet QueryFeatureSet(): return featureSet (supported modes, powers, frequencies, and optional features);
  • Settings QuerySettings(): return current feature settings;
  • Settings QueryFactorySettings(): return reader factory settings, vary by model and region;
  • void ChangeSettings(Settings settings):
  • Status QueryStatus(StatusRefresh refreshWhat): return the reader stauts including antennas, RFID operations, and GPI/O;
  • Status QueryStatus():
  • TagReport QueryTags(seconds):
  • void setGpo(int portNubmer, bool level):
  • ProgramAccessPasswordResult ProgramAccessPassword(...):
  • ProgramKillPasswordResult ProgramKillPassword()
  • ProgramUserBlockResult ProgramUserBlock();

5.2. Callbacks

  • OnConnectionChange(ConnectionChangedEventArgs);
  • OnConnected(ConnectiolnChangedEventArgs);
  • OnConnectionLost(ConnectionChangedEventArgs);
  • OnGpiChanged(GpiChangedEventArgs);
  • OnGpiXChanged(GpiChangedEventArgs);
  • OnReportBufferOverflowed(ReportBufferOverflowedEventArgs);
  • OnStarted(StartedEventArgs);
  • OnTagsReported(TagsReportedEventArgs);

5.3. Property

  • ReaderMode: controls modulation and data rate under different environments;

    • AutoSetDenseReader, AutSetSingleReader, MaxThroughput, etc.
  • SearchMode: controls whether tags are singulated repeatedly or once;
    • ReaderSelected, DualTarget, SingleTarget, etc.
  • TagPopulationEstimate: estimate how many tags will be in the reader's field of view at one time;
  • Filters: control which tags the reader singulated and reports;
  • Filters.Mode: how the reader combine the two filters;
  • Filters.TagFilter1.MemoryBank: Reserved, Epc, Tid, User;
  • Filters.TagFilter1.BitPointer: the bit offset in the specified memory bank at which the tag mask begins;
  • Filters.TagFilter1.BitCount: the number of bits contained within the tag mask;
  • Filter.TagFilter1.TagMask: a hex string representing the bit pattern to match.
  • Antennas[port].PortNumber;
  • Antennas[port].IsEnable;
  • Antennas[port].TxPowerInDbm: the amout of transmit power to use on the antenna, 10.00db~30.0db;
  • Antennas[port].RxSensitivityInDbm: the minimum signal strength that must receive by the reader;
  • LowDutyCyble: low duty cyble is used in situation where the field of view is empty most of time; 用于没有很多标签的时候周期性扫描;
  • Report: controls how often the reader sends a report of tags singulated and which optional fields are reported;
  • Report.Mode; Report.IncludePeakRssi; Report.InlcudeAntennaPortNumber;
  • Report.IncludeFirstSeenTime; IncludelastSeenTime; IncludeSeenCount; IncludePhaseAngle;

6. 学习资源

【硬件模块】RFIDSetting的更多相关文章

  1. Android通过JNI实现与C语言的串口通讯操作蓝牙硬件模块

    一直想写一份技术文档,但因为自感能力有限而无从下笔,近期做了个关于Android平台下实现与C语言的通讯来操作蓝牙模块的项目,中间碰到了很多问题,也在网上查了很多资料,在完毕主要功能后.也有一些人在网 ...

  2. about家庭智能设备部分硬件模块功能共享【协同工作】solution

    本人设备列表: Onda tablet {Android} wifi Desktop computer {win7.centos7} 外接蓝牙adapter PS interface 键盘.鼠标{与同 ...

  3. 【硬件模块】UWB介绍

    From: https://liudongdong1.github.io/ UWB超宽带定位技术属于无线定位技术的一种.无线定位技术是指用来判定移动用户位置的测量方法和计算方法,即定位算法.目前最常用 ...

  4. 【硬件模块】华为NBIOT 使用记录

    From: https://liudongdong1.github.io/ 1. background Low power wide area network (LPWAN) has become a ...

  5. 如何为编程爱好者设计一款好玩的智能硬件(七)——LCD1602点阵字符型液晶显示模块驱动封装(上)

    当前进展: 一.我的构想:如何为编程爱好者设计一款好玩的智能硬件(一)——即插即用.积木化.功能重组的智能硬件模块构想 二.别人家的孩子:如何为编程爱好者设计一款好玩的智能硬件(二)——别人是如何设计 ...

  6. 在Ubuntu为Android硬件抽象层(HAL)模块编写JNI方法提供Java访问硬件服务接口(老罗学习笔记4)

    在上两篇文章中,我们介绍了如何为Android系统的硬件编写驱动程序,包括如何在Linux内核空间实现内核驱动程序和在用户空间实现硬件抽象层接口.实现这两者的目的是为了向更上一层提供硬件访问接口,即为 ...

  7. 为Android硬件抽象层(HAL)模块编写JNI方法提供Java访问硬件服务接口

    在上两篇文章中,我们介绍了如何为Android系统的硬件编写驱动程序,包括如何在Linux内核空间实现内核驱动程序和在用户空间实现硬件抽象层接 口.实现这两者的目的是为了向更上一层提供硬件访问接口,即 ...

  8. 如何为编程爱好者设计一款好玩的智能硬件(三)——该选什么样的MCU呢?

    一.我的构想:如何为编程爱好者设计一款好玩的智能硬件(一)——即插即用.积木化.功能重组的智能硬件模块构想 二.别人家的孩子:如何为编程爱好者设计一款好玩的智能硬件(二)——别人是如何设计硬件积木的! ...

  9. [自娱自乐] 3、超声波测距模块DIY笔记(三)

    前言 上一节我们已经研究了超声波接收模块并自己设计了一个超声波接收模块,在此基础上又尝试用单片机加反相器构成生成40KHz的超声波发射电路,可是发现采用这种设计的发射电路存在严重的发射功率太低问题,对 ...

随机推荐

  1. Leetcode No.27 Remove Element(c++实现)

    1. 题目 1.1 英文题目 Given an integer array nums and an integer val, remove all occurrences of val in nums ...

  2. Charles使用笔记001

    一.抓电脑的请求 Proxy-->勾选Windows Proxy 二.Charles 拦截原理 三.Charles 拦截修改数据 选择一个链接-->右键-->勾选Breakpoint ...

  3. Java基础00-面向对象基础13

    1. 类和对象 1.1 什么是对象 1.2 什么是面向对象                1.3 什么是类 1.4 什么是对象的属性 1.5 什么是对象的行为 行为就是对象能够干什么 1.6 类和对象 ...

  4. YsoSerial 工具常用Payload分析之URLDNS

    本文假设你对Java基本数据结构.Java反序列化.高级特性(反射.动态代理)等有一定的了解. 背景 YsoSerial是一款反序列化利用的便捷工具,可以很方便的生成基于多种环境的反序列化EXP.ja ...

  5. python基础之列表推导式

    #列表推导式 ---> 返回的是列表 for语句 效率更高# 1*1 2*2 3*3 4*4 5*5 6*6 7*7 8*8 9*9# import time# to = time.clock( ...

  6. 《手把手教你》系列技巧篇(十一)-java+ selenium自动化测试-元素定位大法之By tag name(详细教程)

    1.简介 按宏哥计划,本文继续介绍WebDriver关于元素定位大法,这篇介绍By ClassName.看到ID,NAME这些方法的讲解,小伙伴们和童鞋们应该知道,要做好Web自动化测试,最好是需要了 ...

  7. 浅谈树模型与集成学习-从决策树到GBDT

    引言   神经网络模型,特别是深度神经网络模型,自AlexNet在Imagenet Challenge 2012上的一鸣惊人,无疑是Machine Learning Research上最靓的仔,各种进 ...

  8. linux ifconfig不可用

    Q: A: 源出问题,修改源:进入源:源地址 /etc/apt/ sudo vi sources.list,将下列内容替换sources.list中的内容,并保存 deb http://mirrors ...

  9. 点云上的深度学习及其在三维场景理解中的应用(PPT内容整理PointNet)

      这篇博客主要是整理了PointNet提出者祁芮中台介绍PointNet.PointNet++.Frustum PointNets的PPT内容,内容包括如何将点云进行深度学习,如何设计新型的网络架构 ...

  10. Mac搭建Vue开发环境

    1.安装Homebrew /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/ ...