kubernetes 降本增效标准指南|理解弹性,应用弹性
弹性伸缩在云计算领域的简述
弹性伸缩又称自动伸缩,是云计算场景下一种常见的方法,弹性伸缩可以根据服务器上的负载、按一定的规则、进行弹性的扩缩容服务器。
弹性伸缩在不同场景下的含义:
- 对于服务运行在自建机房的公司,弹性伸缩通常意味着允许一些服务器在低负载时进入睡眠状态,从而节省电费(以及用于冷却机器的水费和水费)。
- 对于使用在托管在云上的机房的公司而言,自动扩展可能意味着更低的费用,因为大多数云提供商都基于总使用量而不是最大容量进行收费。
- 即使对于不能在任何给定时间减少运行或支付的总计算能力的公司,它们也可以在低流量时降低服务器的负载。
- 弹性伸缩解决方案还可以用来替换异常状态的实例,从而在一定程度上防止硬件,网络和应用程序故障。
- 在生产工作负载经常变化且不可预测的情况下,弹性伸缩可以提供更长的正常运行时间和更高的可用性。
引用自:https://zh.wikipedia.org/wiki/%E5%BC%B9%E6%80%A7%E4%BC%B8%E7%BC%A9
弹性伸缩的三大关键要素
1. 基于什么特征和属性
弹性伸缩,顾名思义某种机制能够让某些对象进行弹性的扩容和缩容。在云计算和容器相关领域也有较多的关于弹性伸缩的能力,有基于系统负载进行弹性扩缩容的,有基于业务日志进行弹性扩缩容的,也有基于资源预申请进行弹性扩缩容的。最常用的主要有以下记录:
- 基于系统负载指标扩缩容对象
使用场景:当您的应用程序承担更多负载时,往往需要更多的 CPU 和内存资源,这时您可以设置一个 CPU 和内存利用率的指标,系统会自动设置副本数以动态承担不同的负载情况,防止资源利用率过低的资源浪费或负载过高时应用程序无法承担。
限制:有时应用的负载变高但 CPU 和内存的利用率并没有很高,这时基于系统负载指标扩缩容是无效的。并且具体使用哪一种系统负载指标,以及利用率的阈值设定都是比较需要经验的。
- 基于业务日志扩缩容对象
使用场景:业务的日志有专门记录和存储,并且可以通过日志分析得到当前应用的实际负载情况,这时可以根据业务的日志自动扩缩容。
限制:需要拥有日志存储和分析工具;日志信息量普遍很大,基于日志的弹性扩缩容易误判、漏判。
- 基于资源请求扩缩容对象
使用场景:当有些应用不适合水平扩缩容时,此时可以通过调整对资源的请求量来实现扩缩容。相较方式1是扩容副本数实现水平扩缩容,此时扩容的是容器对资源的请求量,属于垂直扩缩容。
限制:当前这种方式需要重建容器,可能会引发服务的中断;并且垂直扩容依赖当前容器运行的节点容量大小,如果节点本身没有剩余资源,也无法实现垂直扩容。
- 基于事件扩缩容对象
使用场景:例如当您的业务需要处理 Kafka 消息队列中的任务时,Kafka 中每多一条 topic,需要生成一个新的副本来处理这个 topic;或者数据库每多一条任务数据,会自动生成一个新的副本来承载这个任务。
限制:完全依赖事件的触发,但事件本身处理时长有长有段,负载程度有高有低,完全相同的副本无法灵活应对。
当然还可以用其他的特征和属性进行扩缩容对象,这里也未全部枚举,具体业务使用弹性伸缩,按需选择不同的特征和属性,特征和属性则是弹性伸缩的基础。
2. 根据什么策略
基于上述的特征和属性获得了数据之后,那么就需要一定的策略和判断规则。 总结来说就是:
- 上述的特征和属性在什么情况和边界下或进行扩容、扩多少、扩什么对象、怎么个扩法?
- 上述的特征和属性在什么情况和边界下或进行缩容、缩多少、缩什么对象、怎么个缩法?
举个 kubernetes Cluster AutoScaler 的例子:
在腾讯云容器服务里节点的缩容策略:
CA(Cluster Autoscaler)监测到利用率(取 CPU 利用率和 MEM 利用率的最大值)低于设定的节点。计算利用率时,可以设置 Daemonset 类型不计入 Pod 占用资源。
CA 判断集群的状态是否可以触发缩容,需要满足如下要求:
节点空闲时长要求(默认10分钟)。
集群扩容缓冲时间要求(默认10分钟)。
CA 判断该节点是否符合缩容条件。您可以按需设置以下不缩容条件(满足条件的节点不会被 CA 缩容):
含有本地存储的节点。
含有 Kube-system namespace 下非 DaemonSet 管理的 Pod 的节点。说明:
CA 驱逐节点上的 Pod 后释放/关机节点(不会处理包年包月节点)。
完全空闲节点可并发缩容(可设置最大并发缩容数)。
非完全空闲节点逐个缩容。
上述就是 Kubernetes 对节点缩容的处理逻辑,也就是弹性伸缩三大关键要素的扩缩容策略部分。总结来说,策略是决定弹性伸缩相关的能力是否足够匹配业务场景的最关键的部分。
3. 弹缩什么对象
弹性伸缩在云服务商上的服务对象往往就是服务器的数量,还有更多弹性伸缩的对象如:云服务器的资源配置(CPU/内存)、还可以是承载用户业务的 Kubernetes 里的 Pod、还可以是其他企业所需要使用的云产品,业务只要有按需使用云资源的诉求,随用随取的资源皆可成为弹性伸缩的对象。 云上弹性伸缩的本质和目的:就是对弹性伸缩对象的按需付费。
弹性跟云计算成本的关系
弹性伸缩可以降低哪些成本
腾讯云云原生团队后续计划推出云原生白皮书, 其中将会介绍来着 1000+ 企业在成本方面的经验总结, 整体分成了三个部分:理解成本->控制成本->优化成本。利用云的弹性伸缩是企业优化成本的三大方法之一。
1、弹性伸缩可降低 IT 设备成本
通过《降本增效|容器化计算资源利用率现象剖析》中的调研分析,充分利用弹性伸缩能力,是提高资源利用率,降低资源成本的关键点之一,对比未使用弹性伸缩的情况下整体资源利用率能够提高20%、30%以上。
腾讯云原生团队提出了容器化资源利用率成熟度模型中的 level2 就是业务利用容器和云的弹性伸缩能力,结合 Kubernetes 的 HPA、VPA、CA 等能力,高峰扩容、空闲缩容,极大提高资源利用率。
2、弹性伸缩可提供运维效率、降低人员投入成本
未使用弹性伸缩的情况下,运维人员可能会碰到以下场景:
● 业务突增或 CC 攻击导致机器数量不足,以致您的服务无响应
● 按高峰访问量预估资源,而平时访问量很少达到高峰,造成投入资源浪费
● 人工守护及频繁处理容量告警,需要多次手动变更
采用弹性伸缩,配置自动化后,既可以释放人员对资源的手动变更的投入成本, 还可以让业务的稳定性进一步提高。
引用自:https://cloud.tencent.com/document/product/377/3154
弹性伸缩影响成本关键点
1、弹性伸缩影响 IT 资源成本的关键点
1. 1 灵敏度
灵敏度可以用从触发扩缩容到实际将对象扩缩容完成的时间来衡量,时间越短、灵敏度越高。
灵敏度的提升对业务来说不仅仅是影响时间差的 IT 资源成本,还可能对业务某些场景起到关键性的作用。
灵敏度可以从 HPA 扩容速度、CluterAutoscler 扩容速度、业务扩容方式多维度进行提升。
灵敏度是腾讯云容器系列产品弹性伸缩功能的关键考核指标,从基础层重点考量弹性伸缩的速度,以节点扩展效率为例,TKE 通过节点池扩节点的时间实际测试数据如下:
测试方案:
创建一个 TKE 集群,分别扩展50、100、200节点
记录批量扩展从启动到完成初始化的时间
释放新创建的节点
重复测试5次,记录每一次批量扩展时间
批量添加50节点:
- | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
---|---|---|---|---|---|
耗时 | 3分 16秒 | 3分 33秒 | 3分 59秒 | 4分 5秒3 | 3分 13秒 |
批量添加100节点批量添加200节点:
- | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
---|---|---|---|---|---|
耗时 | 4分 55秒 | 5分 07秒 | 5分 02秒 | 5分 11秒 | 5分 10秒 |
当然从业务实际需要触发扩缩容到业务负载 Ready,在 Kubernetes 服务层面不仅仅是节点的扩容一个部分,还涉及 Pod 的 HPA、监控或日志指标的采集分析效率等,腾讯云容器服务系列产品也将持续围绕提高弹性伸缩灵敏度建设弹性伸缩产品能力。
1.2 精确度
精确度在弹性伸缩领域主要意味着:在准确的时间进行扩缩容、扩缩数量准确、扩缩的对象属性精确(如云服务器的机型),精确度越高同样意味着越贴合业务,扩容不会扩得过大而导致成本的浪费,也不会扩的过小导致没有解决业务问题,同样缩容不缩的过多导致业务故障、不会缩的过下而造成资源浪费。
精确度跟扩缩容的策略和算法息息相关。
在 Kubenretes 服务上的精确度同灵敏度一样,也分散在各个弹性扩缩容的组件上,以 HPA 来举例,精确度主要的还是其默认的扩缩容算法作代表,详情可参阅 Kubernetes 官网:
desiredReplicas = ceil[currentReplicas * ( currentMetricValue / desiredMetricValue )]
默认的 HPA 扩容策略,能够满足绝大数场景,但业务的场景更多,因此也出现了匹配业务熟悉具备更高精确度的对 Pod 进行扩缩容的组件如:
● 业务属性跟时间相关,通过 CronHPA (腾讯容器服务为 HPC 功能) 来控制更精确的扩缩容时间。
● 基于事件的自动扩缩容 KEDA ,通过替换指标的数据源来匹配业务的诉求如离线计算的场景。
● ......
相信社区后续在 Pod 级别的扩缩容上也还会出现越来越丰富的组件,以适配业务的多样的场景来提高弹性伸缩的精确度。
2、弹性伸缩影响运维成本的关键点
2.1 自动化程度
自动化的程度如果要通过一个可衡量的数值来参考,可以考虑选择运维或开发在IT资源管理上投入的时间,时间越少,自动化程度越高, 投入的时间越少,也意外着投入的人力成本越低。这里的时间还可以继续拆分到投入扩缩容 IT 资源的时间和对 IT 资源资源维护的时间如故障替换等。
想要提高弹性伸缩的自动化程度,理解弹性的基本工作原理是最基础的要求。下文也会详细展开 Kubenetes 服务下的几个基本的弹性伸缩组件的工作原理。
在理解弹性伸缩工作原理的基础上,企业往往会结合自身的运维平台,将弹性伸缩集成进去,成为运维系统的一部分,以结合业务的诉求。因此自动化也要求云服务商对弹性伸缩的可配置性、API 的易用性也有较高的要求,如若各位读者有使用腾讯云容器服务相关的弹性伸缩 API,欢迎各位给产品提供优质的建议。
2. 2 可观测性
之所以将弹性伸缩的可观测性单独作为一个影响运维成本的关键点,是因为当前 Kubernetes 的弹性伸缩的自动化还不能达到完全脱离运维人员的状态,良好的可观测性能让负责 IT 管理的人员减少心智负担,让业务的运行更加透明。同时也让自动化无法处理的工作能够有更快人员介入处理。
可观测性包含对弹性伸缩对象的盘点和管理、弹性伸缩对象基本的系统指标、运行状态的监控、以及故障告警等等。
云厂商的产品包括腾讯云容器系列的产品都会提供一些基本的可观测性的产品能力,也可以采用社区的 Grafana 等仪表盘工具构建企业自己的可观测性平台。
是否所有业务都适用弹性伸缩
业务的扩容相对来讲是一件低风险的事情,最大的影响是支出可能会增多,但对业务本身来说是一件安全的事情。但是弹性伸缩不仅有扩容,也有缩容。业务被缩容之后,针对下次的突发流量是否能快速扩容?特别是如果剩余资源被别的业务抢占,或云上的资源售罄的情况下,临时再扩容是一件风险比较大的事情。
业务的应用之间存在依赖关系时,一个应用扩缩容后,另一个应用是否也该扩缩容?是否会有连锁反应?这些都是可能导致系统故障的风险点。
上面提到的弹性伸缩基于的特征和属性、策略、对象都有很多种,任何一种方式都可以弹性伸缩,到底哪一个才是最好最适合的扩容方式?往往需要非常强的技术积累和经验,很难自动化。
使用弹性不当,导致账单爆涨的案例比比皆是。要理解弹性伸缩工作的原理、才能更准确的使用弹性伸缩,降低业务成本,提高业务稳定性。建议使用 Kubernetes 弹性伸缩能力之前先详细阅读 Kubernetes 弹性伸缩相关官方文档或 Git 文档。
· ClusterAutoScaler: https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
· HPA: https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
· VPA:https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
Kubernetes 弹性领域仍存在的问题
灵敏度存在的问题
弹性伸缩需要监控到“变化”(这个变化指的是上面提到的弹性伸缩的特征和属性),才能根据提前制定的“策略”,对要操作的“对象”进行弹性伸缩。但是从实际业务流量的变高,到负载量“变化”,再到监控组件监控到负载量变化,到最后引发弹性扩缩容发生往往需要较长的时间。
此外,为了保证 Pod 高的 QoS,防止重要 Pod 被 Kubernetes 的调度器驱逐,用户会将容器设置相同的 Request 和 Limit,此时用户实际的资源使用率最多只有 100%。假设用户使用 HPA,且阈值设置为 90%,则每次扩容,副本数最多只能扩容到现在的 1/0.9=1.11 倍。倘若此时流量突然增大到必须使用现在两倍的资源量,即两倍的副本数,则需要扩容 8 次才能承载两倍的流量:(1(1.18)= 2.14),很明显这个扩容步骤过多,周期过长。
时间窗口的设置,当前 HPA 控制器中针对扩容和缩容分别有一个时间窗口,即在该窗口内会尽量保证 HPA 扩缩容的目标副本数处于稳定的状态,其中扩容是3分钟,而缩容是5分钟。若时间窗口设置得较小,则副本数可能频繁变化导致集群状态不稳定;若时间窗口设置得较大,则扩缩容反应时间太慢,无法有效应对突发流量。
影响精确度的问题
扩容是有可能失败的,这对流量突发场景可能是致命的,例如:云上的资源是有可能售罄的,此时无法扩容。
当前 Cluster Autoscaler 的节点扩缩容主要依赖 Pod 的 Pending 情况,数据过于单一,精度有待提高。并且 Pod 的 Pending 只查看已分配的资源请求和限制,而不是实际的资源使用情况,对业务方来说,过度配置 Pod 是常见的做法,这些都影响着弹性伸缩的精度。
一个集群中存在多个规格的 CVM,扩容和缩容应优先处理哪种规格的 CVM,例如:缩容大规格节点容易引发容器重新调度后的争抢饥饿,缩容小规格节点有可能导致集群最后仅剩下大规格节点。
自动化程度的问题
当前的弹性伸缩的各种方法还不够自动化,虽然最后能实现自动的弹性扩缩容,但是它还是建立在前期大量的手工配置上面,这些配置需要很强的业务经验和积累,以及对 Kubernetes 各种弹性伸缩的深刻理解。
以 HPA 为例,目前 TKE 已经支持了五大类共 30 个不同的指标,了解更多详细内容请参见 TKE 自动伸缩指标说明,此外,TKE 还提供了使用自定义指标进行弹性伸缩的方法。这么多的指标该如何选择?那种指标才是最合适自己业务的指标?指标的数值设置成多少合适?副本数的变化范围该如何设置?这里都是影响弹性伸缩的关键因素。
可观测性的问题
什么时间因为什么事情造成了什么样的弹性扩缩容结果,这对现有的监控系统来说,还需要做较多努力。因为现有的监控系统通常都是监控某一项指标,它可以监控副本数的变化,可以监控弹性伸缩对象的变化,也可以监控资源使用率的情况,甚至可以监控事件/日志等信息,但是把它们有机的结合在一起,互联互通却是一件相对来讲较为困难的事情,当前弹性伸缩的可观测性方面还需要人工聚合和分析多方面的监控数据,需要高度定制化,对运维人员来说依旧是一件比较繁琐的事情。
其它问题
1、弹性维度
当前 HPA 监控的是 Pod 的指标,但是有些 Pod 里存在多个容器,主业务容器高负载的情况下,如果此时 sidecar 容器低负载,并且此 Pod 下所有容器的平均资源利用率低于引发扩容的阈值时,也无法引发扩容,配置的弹性伸缩无效。维度方面还有一个高维度的问题:同样以 HPA 为例,作用对象是 Pod 级别,但产品通常是以应用为中心,HPA 的弹性伸缩缺少“联动效应”,例如一个 Pod 的扩缩容是否可以自动引发同一个应用下其它 Pod 的扩缩容?
2、驱逐选择
一个 Pod 资源利用率很低,若它的资源被弹性收缩后,资源被别的负载侵占,此时如果这个 Pod 负载突然变高,但节点又没有剩余可用资源,是该驱逐该 Pod 还是驱逐别的 Pod?
腾讯云容器服务弹性伸缩愿景介绍
我们致力于依托腾讯云原生团队提供的各种弹性伸缩服务,帮助客户实现自动化的资源管理,减少人力维护成本以及资源浪费,提升弹性伸缩灵敏度、精确度、自动化、可观测性。具体可参照的 Kubernetes 降本增效标准指南系列的上一篇文章《资源利用率提升工具大全》。
欢迎广大读者试用并且提出您宝贵的建议。
kubernetes 降本增效标准指南|理解弹性,应用弹性的更多相关文章
- kubernetes 降本增效标准指南| 容器化计算资源利用率现象剖析
作者:詹雪娇,腾讯云容器产品经理,目前主要负责腾讯云集群运维中心的产品工作. 张鹏,腾讯云容器产品工程师,拥有多年云原生项目开发落地经验.目前主要负责腾讯云TKE集群和运维中心开发工作. 引言 降本增 ...
- kubernetes 降本增效标准指南| 资源利用率提升工具大全
背景 公有云的发展为业务的稳定性.可拓展性.便利性带来了极大帮助.这种用租代替买.并且提供完善的技术支持和保障的服务,理应为业务带来降本增效的效果.但实际上业务上云并不意味着成本一定较少,还需适配云上 ...
- kubernetes 降本增效标准指南|ProphetPilot:容器智能成本管理引擎
作者 田奇,腾讯云高级工程师,专注大规模离在线混部,弹性伸缩,云原生成本优化,熟悉Kubernetes,关注云原生大数据.AI. 王孝威,腾讯云容器产品经理,热衷于为客户提供高效的 Kubernete ...
- Kubernetes 降本增效标准指南 | 基于K8s 扩展机制构建云上成本控制系统
作者 王玉君,腾讯云后台高级开发工程师,负责腾讯云原生系统开发及建设. 晏子怡,腾讯云容器产品经理,在K8s弹性伸缩.资源管理领域有丰富的实战经验. 导语 Kubernetes 作为 IaaS 和 P ...
- 宙斯盾 DDoS 防护系统“降本增效”的云原生实践
作者 tomdu,腾讯云高级工程师,主要负责宙斯盾安全防护系统管控中心架构设计和后台开发工作. 导语 宙斯盾 DDoS 防护系统作为公司级网络安全产品,为各类业务提供专业可靠的 DDoS/CC 攻击防 ...
- 三小时学会Kubernetes:容器编排详细指南
三小时学会Kubernetes:容器编排详细指南 如果谁都可以在三个小时内学会Kubernetes,银行为何要为这么简单的东西付一大笔钱? 如果你心存疑虑,我建议你不妨跟着我试一试!在完成本文的学习后 ...
- [转载]三小时学会Kubernetes:容器编排详细指南
原翻译by梁晓勇 原英文:Learn Kubernetes in Under 3 Hours: A Detailed Guide to Orchestrating Containers 我很奇怪,为什 ...
- 降本增效利器!趣头条Spark Remote Shuffle Service最佳实践
王振华,趣头条大数据总监,趣头条大数据负责人 曹佳清,趣头条大数据离线团队高级研发工程师,曾就职于饿了么大数据INF团队负责存储层和计算层组件研发,目前负责趣头条大数据计算层组件Spark的建设 范振 ...
- CRM帮助初创企业降本增效的四个方法
对大部分初创公司来说,只有少数企业能够实现盈利,大部分只能维持盈亏平衡甚至是亏损.这是因为初创企业很难在短时间之内找到稳定的赢利点,而企业面临的风险和投入又是无法预知的.初创企业想要快速盈利,只能降低 ...
随机推荐
- ssh+scp基本使用
1 ssh ssh一般用于连接服务器,可以使用密码认证与密钥认证的方式. 1.1 密码认证 直接使用ssh即可: ssh username@xxx.xxx.xxx.xxx username为用户名,后 ...
- 强大的工具(一):Capslock+ 3.x版本
1 概述 作者终于把Capslock+更新到了3.x版本了,所以就更了这篇博客. 2.x版本的可以戳这里. 3.x版本与2.x版本的主要不同是更新了新的键盘布局,更加顺手,下面让我们一起来看一下吧. ...
- (十五)VMware Harbor 标签管理
1. Harbor提供两种标签用来隔离各种资源(目前只有镜像): 全局级别标签: 由系统管理员管理,用于管理整个系统的镜像.它们可以添加到任何项目下的镜像中. 项目级别标签: 由项目管理员或者系统管理 ...
- Azure data studio 跨平台数据库管理工具试用
最近折腾 azure sql database 的时候发现了微软的一款新的数据库管理工具: azure data studio.从名字上看 azure data studio 好像是专门为 azure ...
- Win64 驱动内核编程-11.回调监控进线程句柄操作
无HOOK监控进线程句柄操作 在 NT5 平台下,要监控进线程句柄的操作. 通常要挂钩三个API:NtOpenProcess.NtOpenThread.NtDuplicateObject.但是在 VI ...
- Winamp栈溢出漏洞研究【转载】
课程简介 Winamp是一款非常经典的音乐播放软件,它于上世纪九十年代后期问世.与现在音乐播放软件行业百家争鸣的情况不同,当时可以说Winamp就是听音乐的唯一选择了,相信那个时代的电脑玩家是深有体会 ...
- BUAA软件工程热身作业
写在前面 项目 内容 所属课程 2020春季计算机学院软件工程(罗杰 任健) (北航) 作业要求 热身作业(阅读) 课程目标 培养软件开发能力 本作业对实现目标的具体作用 深入认识自己,总结过往并展望 ...
- Go 函数详解
一.函数基础 函数由函数声明关键字 func.函数名.参数列表.返回列表.函数体组成 函数是一种类型.函数类型变量可以像其他类型变量一样使用,可以作为其他函数的参数或返回值,也可以直接调用执行 函数名 ...
- CSS中margin负值巧布局
margin负值实现细边框 我们先准备五个div盒子,并设置好浮动和2px的实线黑色边框,看看效果 中间的边框线挨在了一起致使边框变粗成了4px,这时使用margin负值就可以解决这个问题 <s ...
- (原创)高DPI适配经验系列:(三)字体与字号、缩放锚点
一.前言 程序最基本的元素,就是文本,也就是字体.如果程序未进行高DPI的适配,最直观的感受便是字体的模糊.所以本篇便来说一下高DPI适配中的字体问题. 高DPI的适配,简单来说便是便是根据不同的DP ...