一.介绍

1.Segment(分段锁)

1.1 Segment

  • 容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效的提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术
  • 分段锁其实是一种锁的设计,并不是具体的一种锁,对于ConcurrentHashMap而言,其并发的实现就是通过分段锁的形式来实现高效的并发操作。
  • Segment 类继承于 ReentrantLock 类

  • 如图,ConcurrentHashMap定位一个元素的过程需要进行两次Hash操作。

    第一次Hash定位到Segment,第二次Hash定位到元素所在的链表的头部

    • 坏处

      这一种结构的带来的副作用是Hash的过程要比普通的HashMap要

    • 好处

      写操作的时候可以只对元素所在的Segment进行加锁即可,不会影响到其他的Segment,这样,在最理想的情况下,ConcurrentHashMap可以最高同时支持Segment数量大小的写操作(刚好这些写操作都非常平均地分布在所有的Segment上)。

  • 注:

    • 当需要put元素的时候,并不是对整个hashmap进行加锁,而是先通过hashcode来知道他要放哪一个分段中,然后对分段加锁,所以当多线程put的时候,只要不是放在一个分段这种,就实现了真正的并行插入
  • 但是,在统计size的时候,可就是获取hashmap全局信息的时候,就可能需要获取所有的分段锁才能统计。

    • 其中并发级别控制了Segment的个数,在一个ConcurrentHashMap创建后Segment的个数是不能变的,扩容过程过改变的是每个Segment的大小。

1.2 ReentrantLock

  • lock拿不到锁会一直等待。tryLock是去尝试,拿不到就返回false,拿到返回true。

    tryLock是可以被打断的,被中断 的,lock是不可以。

2.数据结构

在JDK1.7版本中,ConcurrentHashMap的数据结构是由一个Segment数组和多个HashEntry组成,如1.中图所示

3.CocurrentHashMap和HashMap异同

3.1 相同点:

  • 都实现了 Map 接口,继承了 AbstractMap 抽象类
  • jdk1.7都是数组 + 链表 ,1.8变成了数组 + 链表 + 红黑树

3.2 不同点

  • HashMap不支持并发操作,没有同步方法

4.CocurrentHashMap和HashTable的对比

  • Hashtable它把所有方法都加上synchronized关键字来实现线程安全。所有的方法都同步这样造成多个线程访问效率特别低。

  • HashTable的锁加在整个Hash表上,而ConcurrentHashMap将锁加在segment上(每个段上)

二.源码部分

1.基本属性

AbstractMap 是 Map 接口的的实现类之一,也是 HashMap, TreeMap, ConcurrentHashMap 等类的父类。

ConcurrentMap它是一个接口,是一个能够支持并发访问的java.util.map集合

Serializable :一个对象序列化的接口,一个类只有实现了Serializable接口,它的对象才能被序列化

1.1常用常量

public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
implements ConcurrentMap<K, V>, Serializable {
//serialVersionUID 用来表明实现序列化类的不同版本间的兼容性
private static final long serialVersionUID = 7249069246763182397L;
/**
* The default initial capacity for this table,该表的默认初始容量
* used when not otherwise specified in a constructor.在构造函数中未指定时使用
*/
static final int DEFAULT_INITIAL_CAPACITY = 16; /**
* The default load factor for this table, used when not otherwise specified in a constructor.
* 该表的默认加载因子,在构造函数中未指定时使用。
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f; /**
* The default concurrency level for this table, used when not otherwise specified in a constructor.
* 此表的默认并发级别,在构造函数中未指定时使用。
*/
static final int DEFAULT_CONCURRENCY_LEVEL = 16; /**
* The maximum capacity, used if a higher value is implicitly specified by either of the constructors with arguments. MUST
* be a power of two <= 1<<30 to ensure that entries are indexable
* using ints.
* 最大容量
*/
static final int MAXIMUM_CAPACITY = 1 << 30; /**
* The minimum capacity for per-segment tables. Must be a power
* of two, at least two to avoid immediate resizing on next use
* after lazy construction.
* 每个段表的最小容量。必须是2的幂,至少为2,以避免在延迟构造后再次使用时立即调整大小。
*/
static final int MIN_SEGMENT_TABLE_CAPACITY = 2; /**
* The maximum number of segments to allow; used to bound
* constructor arguments. Must be power of two less than 1 << 24.
* 允许的最大段数;用于绑定构造函数参数。
*/
static final int MAX_SEGMENTS = 1 << 16; // slightly conservative /**
* Number of unsynchronized retries in size and containsValue
* methods before resorting to locking. This is used to avoid
* unbounded retries if tables undergo continuous modification
* which would make it impossible to obtain an accurate result.
* 在使用锁定之前,在size和containsValue方法上的未同步重试次数。如果表经历了连续的修改,从而无法获得准确的结果,这可以用来避免无边界重试。
* 在size方法和containsValue方法,会优先采用乐观的方式不加锁,直到重试次数达到2,才会对所有Segment加锁
* 这个值的设定,是为了避免无限次的重试。后边size方法会详讲怎么实现乐观机制的。
*/
static final int RETRIES_BEFORE_LOCK = 2;
/**
* Mask value for indexing into segments. The upper bits of a key's hash code are used to choose the segment.
* 用于索引段的掩码值,用于根据元素的hash值定位所在的 Segment 下标
*/
final int segmentMask; /**
* Shift value for indexing within segments.
* 在段内索引的移位值
*/
final int segmentShift; /**
* The segments, each of which is a specialized hash table.
* Segment 组成的数组,每一个 Segment 都可以看做是一个特殊的 HashMap
*/
final Segment<K,V>[] segments;

1.2内部类

/**
* ConcurrentHashMap list entry. Note that this is never exported out as a user-visible Map.Entry.
* ConcurrentHashMap列表条目。注意,这永远不会导出为用户可见的Map.Entry。
* HashEntry,存在于每个Segment中,它就类似于HashMap中的Node,用于存储键值对的具体数据和维护单向链表的关系
*/
static final class HashEntry<K,V> {
final int hash;
final K key;
//value和next都用 volatile 修饰,用于保证内存可见性和禁止指令重排序
volatile V value;
volatile HashEntry<K,V> next; HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
static final class Segment<K,V> extends ReentrantLock implements Serializable {
private static final long serialVersionUID = 2249069246763182397L; /**
* The maximum number of times to tryLock in a prescan before possibly blocking on acquire in preparation for a locked
* segment operation. On multiprocessors, using a bounded
* number of retries maintains cache acquired while locating
* nodes.
* 在为锁定段操作做准备而可能阻塞之前,在预扫描中尝试lock的最大次数。在多处理器上,使用有限的重试次数来维护在定位节点时获取的缓存。
*/
static final int MAX_SCAN_RETRIES =
Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1; /**
* The per-segment table. Elements are accessed via
* entryAt/setEntryAt providing volatile semantics.
* 每个segment中的键值对数组
*/
transient volatile HashEntry<K,V>[] table; /**
* The number of elements. Accessed only either within locks
* or among other volatile reads that maintain visibility.
* Segment中的元素个数
*/
transient int count; /**
* The total number of mutative operations in this segment.
* Even though this may overflows 32 bits, it provides
* sufficient accuracy for stability checks in CHM isEmpty()
* and size() methods. Accessed only either within locks or
* among other volatile reads that maintain visibility.
* 每次 table 结构修改时,modCount增加1
*/
transient int modCount; /**
* The table is rehashed when its size exceeds this threshold.
* 当表的大小超过这个阈值时,表将被重新散列。
* (The value of this field is always <tt>(int)(capacity *
* loadFactor)</tt>.)
* segment扩容的阈值
*/
transient int threshold; /**
* The load factor for the hash table. Even though this value
* is same for all segments, it is replicated to avoid needing
* links to outer object.
* @serial
* 加载因子
*/
final float loadFactor;
//构造函数
Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
this.loadFactor = lf;
this.threshold = threshold;
this.table = tab;
}

2.构造函数

/**
* Creates a new, empty map with a default initial capacity (16),
* load factor (0.75) and concurrencyLevel (16).
* 创建一个新的空映射,具有默认的初始容量(16),负载因子(0.75)和并发级别(16)。
*/
public ConcurrentHashMap() {
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
}
/**
* Creates a new, empty map with the specified initial capacity,
* and with default load factor (0.75) and concurrencyLevel (16).
* 使用指定的初始容量创建一个新的空映射,以及默认的负载因子(0.75)和并发级别(16)。
* @param initialCapacity the initial capacity. The implementation
* performs internal sizing to accommodate this many elements.
* @throws IllegalArgumentException if the initial capacity of
* elements is negative.
*/
public ConcurrentHashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
}
/**
* Creates a new, empty map with the specified initial capacity
* and load factor and with the default concurrencyLevel (16).
* 使用指定的初始容量,负载因子和默认的concurrencyLevel (16)创建一个新的空映射
* @param initialCapacity The implementation performs internal
* sizing to accommodate this many elements.
* @param loadFactor the load factor threshold, used to control resizing.
* Resizing may be performed when the average number of elements per
* bin exceeds this threshold.
* @throws IllegalArgumentException if the initial capacity of
* elements is negative or the load factor is nonpositive
*
* @since 1.6
*/
public ConcurrentHashMap(int initialCapacity, float loadFactor) {
this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
}
/**
* Creates a new map with the same mappings as the given map.
* 使用与给定映射相同的映射创建一个新映射。
* The map is created with a capacity of 1.5 times the number
* of mappings in the given map or 16 (whichever is greater),
* and a default load factor (0.75) and concurrencyLevel (16).
* 容量为原map * 1.5倍 和 16 中大的那个,加载因子为0.75,concurrencyLevel为16
* @param m the map
*/
public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
//构建新的table
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY),
DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
//将原映射put进去
putAll(m);
}
/**
* Creates a new, empty map with the specified initial capacity, load factor and concurrency level.
* 使用指定的初始容量、负载因子和并发级别创建一个新的空映射。
* 所有的构造函数最终都会调用这个构造函数
* @param initialCapacity the initial capacity. The implementation
* performs internal sizing to accommodate this many elements.
* @param loadFactor the load factor threshold, used to control resizing.
* Resizing may be performed when the average number of elements per
* bin exceeds this threshold.
* @param concurrencyLevel the estimated number of concurrently
* updating threads. The implementation performs internal sizing
* to try to accommodate this many threads.
* @throws IllegalArgumentException if the initial capacity is
* negative or the load factor or concurrencyLevel are
* nonpositive.
*/
@SuppressWarnings("unchecked")
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
//如果加载因子<=0,初始容量为负,并发级别<=0,则抛出异常
if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
//并发级别不能大于16
if (concurrencyLevel > MAX_SEGMENTS)
concurrencyLevel = MAX_SEGMENTS;
// Find power-of-two sizes best matching arguments 找到2次幂大小的最佳匹配参数
//偏移量
//默认concurrencyLevel = 16, 所以ssize在默认情况下也是16,此时 sshift = 4
int sshift = 0;
//segmen的大小
int ssize = 1;
//找到>concurrencyLevel的最小2次幂
//sshift相当于ssize从1向左移的次数
while (ssize < concurrencyLevel) {
++sshift;
ssize <<= 1;
}
//段偏移量,默认值28
this.segmentShift = 32 - sshift;
//掩码
this.segmentMask = ssize - 1;
//对初始容量再进行判断
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//计算一个segment中数组的数量
int c = initialCapacity / ssize;
//向上取整
if (c * ssize < initialCapacity)
++c;
//最小分段为2
int cap = MIN_SEGMENT_TABLE_CAPACITY;
//同样地,将segment容量取到大于实际需要的最小2次幂
while (cap < c)
cap <<= 1;
// create segments and segments[0]
//创建segment数组,并初始化segmen[0]
Segment<K,V> s0 =
new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
(HashEntry<K,V>[])new HashEntry[cap]);
//创建ssize大小的数组
Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
//将obj对象的偏移量为offset的位置修改为value,因为Java中没有内存操作,而Unsafe的这个操作正好补充了内存操作的不足。也可以用于数组操作,比如ConcurrentHashMap中就大量用到了该操作
UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
this.segments = ss;
}

3. put()

/**
* Maps the specified key to the specified value in this table.
* 将指定的键映射到该表中的指定值。
* Neither the key nor the value can be null.
* 键和值都不能为空。
* <p> The value can be retrieved by calling the <tt>get</tt> method
* with a key that is equal to the original key.
* 可以通过调用get方法检索该值,该方法具有与原始键相等的键
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>
* @throws NullPointerException if the specified key or value is null
*/
//告诉编译器忽略警告。不用在编译完成后出现警告
@SuppressWarnings("unchecked")
public V put(K key, V value) {
Segment<K,V> s;
//如果指定的值为空,抛出异常
if (value == null)
throw new NullPointerException();
int hash = hash(key);
//一个键值对在Segment数组中下标
int j = (hash >>> segmentShift) & segmentMask;
//这里是用Unsafe类的原子操作找到Segment数组中j下标的 Segment 对象
if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck
(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
//返回segment类型,如果不存在则初始化
s = ensureSegment(j);
//将键值对通过segment中put方法put,返回值为:
return s.put(key, hash, value, false);
}
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
//这里通过tryLock尝试加锁,如果加锁成功,返回null,否则执行 scanAndLockForPut方法
HashEntry<K,V> node = tryLock() ? null :
scanAndLockForPut(key, hash, value);
//保存旧value
V oldValue;
try {
HashEntry<K,V>[] tab = table;
//二次哈希计算,求hashentry数组下标
int index = (tab.length - 1) & hash;
//找到下标的头结点
HashEntry<K,V> first = entryAt(tab, index);
//遍历操作
for (HashEntry<K,V> e = first;;) {
//当首结点不为空的时候
if (e != null) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
e = e.next;
}
else {
//当首结点为空,或者遍历晚时,以下
//node值不为空时,说明调用scanAndLockForPut()方法时,遍历没有找到该节点,创建了新结点给node,“预热”
if (node != null)
//直接头插法
node.setNext(first);
else
//新建结点,头插法
node = new HashEntry<K,V>(hash, key, value, first);
count加1
int c = count + 1;
//当c大于阈值且table长度没达到最大值的时候扩容
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
rehash(node);
else
//否则,将结点插到数组下标为index的位置
setEntryAt(tab, index, node);
//增加修改次数
++modCount;
//count也++
count = c;
//因为没有旧的value所以设置为null
oldValue = null;
break;
}
}
} finally {
unlock();
}
//返回oldvalue
return oldValue;
}

4.get()

/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
* 返回指定键映射到的值,或是null
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code key.equals(k)},
* then this method returns {@code v}; otherwise it returns
* {@code null}. (There can be at most one such mapping.)
*
* @throws NullPointerException if the specified key is null
*/
public V get(Object key) {
Segment<K,V> s; // manually integrate access methods to reduce overhead 手动集成访问方法以减少开销
HashEntry<K,V>[] tab;
//计算hash值
int h = hash(key);
//从主存中取出最新的结点
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
//如果若Segment不为空,且链表也不为空,则遍历查找节点
if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
//找到结点,返回value
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return e.value;
}
}
//无,返回空
return null;
}

5. ensureSegment()

/**
* Returns the segment for the given index, creating it and recording in segment table (via CAS) if not already present.
* 返回给定索引的段,创建它并(通过CAS)在段表中记录(如果不存在)。
* @param k the index
* @return the segment
*/
@SuppressWarnings("unchecked")
////k为 (hash >>> segmentShift) & segmentMask 计算出的segment下标
private Segment<K,V> ensureSegment(int k) {
final Segment<K,V>[] ss = this.segments;
////u代表 k 的偏移量,用于通过 UNSAFE 获取主内存最新的实际 K 值
long u = (k << SSHIFT) + SBASE; // raw offset
Segment<K,V> seg;
//从内存中取到最新的下标位置的 Segment 对象,判断是否为空
if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
//如果为空,则按照ss[0]为原型来建造segment
Segment<K,V> proto = ss[0]; // use segment 0 as prototype
//容量为ss[0]的长度
int cap = proto.table.length;
//加载因子也为ss[0]的
float lf = proto.loadFactor;
//算出阈值
int threshold = (int)(cap * lf);
//再创建Segment 对应的 HashEntry 数组
HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
== null) { // recheck 再次从内存中取到最新的下标位置的 Segment 对象,判断是否为空
//创建segment对象
Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
//循环检查 u下标位置的 Segment 是否为空
while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
== null) {
//不为空,说明有其他线程已经创建对象,则用seg保存
//若为空,则当前下标的Segment对象为空,就把它替换为最新创建出来的 s 对象
if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
break;
}
}
}
//返回segment
return seg;
}

6.scanAndLockForPut()

/**
* Scans for a node containing given key while trying to
* acquire lock, creating and returning one if not found. Upon
* return, guarantees that lock is held. UNlike in most
* methods, calls to method equals are not screened: Since
* traversal speed doesn't matter, we might as well help warm
* up the associated code and accesses as well.
* put()方法第一步抢锁失败之后,就会执行此方法
* @return a new node if key not found, else null
*/
private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
//找到HashEntry数组的下标的首结点
HashEntry<K,V> first = entryForHash(this, hash);
HashEntry<K,V> e = first;
HashEntry<K,V> node = null;
//初始化重试次数,为-1
int retries = -1; // negative while locating node
//一直尝试抢锁
while (!tryLock()) {
HashEntry<K,V> f; // to recheck first below
//
if (retries < 0) {
//首结点为空,预先创建一个新的结点,在hashentry数组上,retries++
if (e == null) {
if (node == null) // speculatively create node
node = new HashEntry<K,V>(hash, key, value, null);
retries = 0;
}
//如果first有值,并且相对应,则也把retries = 0
else if (key.equals(e.key))
retries = 0;
else
//不对应的话,就从判断语句开始
//同样的如果空,就新建结点,否则找到该结点,最后retries = 0
e = e.next;
}
else if (++retries > MAX_SCAN_RETRIES) {
//lock拿不到锁会一直等待。tryLock是去尝试,拿不到就返回false,拿到返回true。
lock();
break;
}
//retries为偶数的时候&1为0,检查在这段时间内first结点是否有改变
else if ((retries & 1) == 0 &&
(f = entryForHash(this, hash)) != first) {
e = first = f; // re-traverse if entry changed如果条目改变了,重新遍历
retries = -1;
}
}
return node;
}
  • scanAndLockForPut 这个方法可以确保返回时,当前线程一定是获取到锁的状态。

7.rehash()

  • 当 put 方法时,发现元素个数超过了阈值,则会扩容

  • 但是segment互相之间并不影响

/**
* Doubles size of table and repacks entries, also adding the given node to new table
* 将表的大小增加一倍并重新打包条目,还将给定节点添加到新表中
*/
@SuppressWarnings("unchecked")
private void rehash(HashEntry<K,V> node) {
/*
* Reclassify nodes in each list to new table. Because we
* are using power-of-two expansion, the elements from
* each bin must either stay at same index, or move with a
* power of two offset. We eliminate unnecessary node
* creation by catching cases where old nodes can be
* reused because their next fields won't change.
* Statistically, at the default threshold, only about
* one-sixth of them need cloning when a table
* doubles. The nodes they replace will be garbage
* collectable as soon as they are no longer referenced by
* any reader thread that may be in the midst of
* concurrently traversing table. Entry accesses use plain
* array indexing because they are followed by volatile
* table write.
*/
HashEntry<K,V>[] oldTable = table;
//oldCapacity为原表的长度
int oldCapacity = oldTable.length;
//新容量为原来的2倍
int newCapacity = oldCapacity << 1;
//再计算新的阈值
threshold = (int)(newCapacity * loadFactor);
//创建新容量的hashentry
HashEntry<K,V>[] newTable =
(HashEntry<K,V>[]) new HashEntry[newCapacity];
//哈希表大小掩码 用于计算索引值
int sizeMask = newCapacity - 1;
//遍历原表
for (int i = 0; i < oldCapacity ; i++) {
//// e 为链表的第一个结点
HashEntry<K,V> e = oldTable[i];
//如果首结点不为空
if (e != null) {
//保存e的next结点
HashEntry<K,V> next = e.next;
//重新计算e的index
int idx = e.hash & sizeMask;
//如果next为null,说明此位置没发生哈希冲突,直接将e插入
if (next == null) // Single node on list
newTable[idx] = e;
else { // Reuse consecutive sequence at same slot 重复使用同一槽位的连续序列
HashEntry<K,V> lastRun = e;
int lastIdx = idx;
//遍历列表
for (HashEntry<K,V> last = next;
last != null;
last = last.next) {
//计算当前遍历到的节点的新下标
int k = last.hash & sizeMask;
//若 k 不等于 lastIdx,则把last更新
if (k != lastIdx) {
lastIdx = k;
lastRun = last;
}
}
//新表的lastidx位置放入和lastrun index相同的结点
newTable[lastIdx] = lastRun;
// Clone remaining nodes 克隆剩余节点
for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
//通过遍历建立新结点的方式
V v = p.value;
int h = p.hash;
int k = h & sizeMask;
HashEntry<K,V> n = newTable[k];
newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
}
}
}
}
//添加新节点,put方法传入的结点
int nodeIndex = node.hash & sizeMask; // add the new node
node.setNext(newTable[nodeIndex]);
newTable[nodeIndex] = node;
table = newTable;
}

8.remove()

/**
* Remove; match on key only if value null, else match both.
*/
final V remove(Object key, int hash, Object value) {
//抢锁
if (!tryLock())
scanAndLock(key, hash);
V oldValue = null;
try {
HashEntry<K,V>[] tab = table;
//找到哈希表对应下标的头结点
int index = (tab.length - 1) & hash;
HashEntry<K,V> e = entryAt(tab, index);
HashEntry<K,V> pred = null;
//如果首结点不为null
while (e != null) {
K k;
//记录next
HashEntry<K,V> next = e.next;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
V v = e.value;
if (value == null || value == v || value.equals(v)) {
if (pred == null)
/**
* static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
* HashEntry<K,V> e) {
* UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
* putOrderedObject: 将这个方法名拆成 put ordered Object
*/
setEntryAt(tab, index, next);
else
pred.setNext(next);
++modCount;
--count;
oldValue = v;
}
break;
//用的Unsafe的方法直接替换数组对应的值(此时的数组对应的空,所以可以直接插入),然后就是解锁,返回旧的值了。
}
pred = e;
e = next;
}
} finally {
unlock();
}
return oldValue;
}

9.size()

/**
* Returns the number of key-value mappings in this map.
* 返回此映射中的键-值映射的数量。
* If the map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
* <tt>Integer.MAX_VALUE</tt>.
*
* @return the number of key-value mappings in this map
*/
public int size() {
// Try a few times to get accurate count. On failure due to
// continuous async changes in table, resort to locking.
//试几次,得到准确的数字。如果由于表中的连续异步更改而导致失败,则使用锁定。
final Segment<K,V>[] segments = this.segments;
int size;
boolean overflow; // true if size overflows 32 bits
long sum; // sum of modCounts 的和
long last = 0L; // previous sum
int retries = -1; // first iteration isn't retry 重试次数
try {
for (;;) {
//如果超过重试次数,则不再重试,而是把所有Segment都加锁,再统计 size
if (retries++ == RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
ensureSegment(j).lock(); // force creation
}
sum = 0L;
size = 0;
overflow = false;
//遍历所有Segment
//先不都锁上,每个段统计count,并记录modcount
//最后如果modcount不相等,则重新循环,直到超出最大重试次数
//则强制锁上所有segment,然后统计次数返回
for (int j = 0; j < segments.length; ++j) {
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null) {
sum += seg.modCount;
int c = seg.count;
if (c < 0 || (size += c) < 0)
overflow = true;
}
}
if (sum == last)
break;
last = sum;
}
} finally {
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
segmentAt(segments, j).unlock();
}
}
return overflow ? Integer.MAX_VALUE : size;
}

三.总结

1. ConcurrentHashMap中变量使用final和volatile修饰有什么用呢?

  • final :HashEntry里面除了value值不是final修饰的,其他都被final修饰了,所以在HashEntry链表里面添加HashEntry的时候,只能添加到头节点,不能添加到尾节点,因为HashEntry里面的next值是被final修饰的,不能修改。

  • volatile:来保证某个变量内存的改变对其他线程即时可见,在配合CAS可以实现不加锁对并发操作的支持。

    如:get操作可以无锁是由于Node的元素val和指针next是用volatile修饰的,在多线程环境下线程A修改结点的val或者新增节点的时候是对线程B可见的

2. 什么是哈希算法?

  • 是一种将任意内容的输入转换成相同长度输出的加密方式,其输出被称为哈希值。

3. 为什么用两次hash?

  • 构造分离锁,操作的时候不会锁住整个表,提高并发能力

4. hashmap在多线程下的隐患是什么?可以用用什么代替

  • jdk1.7版本存在put操作时存在丢失数据的情况

    jdk1.8版本虽然解决了死循环问题,但是也有数据覆盖问题

  • 可用ConcurrentHashMap代替HashMap

5. 并发问题分析

ConcurrentHashMap的get操作时候,新增,修改,删除都是要考虑并发问题的

。。。

6. segmentShift、segmentMask、sshift、ssize和SBASE关系

  • 一个键值对在Segment数组中下标为:

    (hash >>> segmentShift) & segmentMask

  • 其中,

    • segmentShift = 32 - sshift
    • segmentMask = ssize - 1
    • 其中,
      • 2^sshif=ssize
      • ssize为concurrencyLevel的最小2次幂

ConcurrentHashMap (jdk1.7)源码学习的更多相关文章

  1. JDK1.8源码学习-String

    JDK1.8源码学习-String 目录 一.String简介 String类是Java中最常用的类之一,所有字符串的字面量都是String类的实例,字符串是常量,在定义之后不能被改变. 二.定义 p ...

  2. JDK1.8源码学习-Object

    JDK1.8源码学习-Object 目录 一.方法简介 1.一个本地方法,主要作用是将本地方法注册到虚拟机中. private static native void registerNatives() ...

  3. JDK1.8源码学习-LinkedList

    JDK1.8源码学习-LinkedList 目录 一.LinkedList简介 LinkedList是一个继承于AbstractSequentialList的双向链表,是可以在任意位置进行插入和移除操 ...

  4. JDK1.8源码学习-ArrayList

    JDK1.8源码学习-ArrayList 目录 一.ArrayList简介 为了弥补普通数组无法自动扩容的不足,Java提供了集合类,其中ArrayList对数组进行了封装,使其可以自动的扩容或缩小长 ...

  5. JDK1.8源码学习-HashMap

    JDK1.8源码学习-HashMap 目录 一.HashMap简介 HashMap 主要用来存放键值对,它是基于哈希表的Map接口实现的,是常用的Java集合之一. 我们都知道在JDK1.8 之前 的 ...

  6. jdk1.8源码学习笔记

    前言: 前一段时间开始学习了一些基本的数据结构和算法,算是弥补了这方面的知识短板,但是仅仅是对一些算法的了解,目前工作当中也并没有应用到这些,因此希望通过结合实际例子来学习,巩固之前学到的内容,思前想 ...

  7. Java JDK1.8源码学习之路 1 Object

    写在最前 对于一个合格的后端程序员来说,现行的流行框架早已经能胜任基本的企业开发,Springboot 任何的框架都把重复的工作更佳简单/优化的解决掉,但是完全陷入在这样的温水里面, 好比温水煮青蛙, ...

  8. Java JDK1.8源码学习之路 2 String

    写在最前 String 作为我们最常使用的一个Java类,注意,它是一个引用类型,不是基本类型,并且是一个不可变对象,一旦定义 不再改变 经常会定义一段代码: String temp = " ...

  9. JDK1.8源码学习-String-hashCode方法为什么选择数字31作为乘子

    1. 背景 某天,我在写代码的时候,无意中点开了 String hashCode 方法.然后大致看了一下 hashCode 的实现,发现并不是很复杂.但是我从源码中发现了一个奇怪的数字,也就是本文的主 ...

  10. Java并发包源码学习系列:JDK1.8的ConcurrentHashMap源码解析

    目录 为什么要使用ConcurrentHashMap? ConcurrentHashMap的结构特点 Java8之前 Java8之后 基本常量 重要成员变量 构造方法 tableSizeFor put ...

随机推荐

  1. spring cloud Zuul 多层拦截 --- 心得

    1.前言 根据教材.博客文章的实例实操,基本都是单层拦截,没有找到多层拦截的具体写法 ,让我走了很多弯路,我将其写在这里,以待以后参考. 2.环境 spring boot : 2.1.6.RELEAS ...

  2. nuxt服务端渲染

    <template> <div class="page"> page is search <ul> <li v-for="(it ...

  3. react中使用antd按需加载(第一部)

    什么是react按需加载?简单来说就是当我们引用antd的时候需要引入全局css样式,这会对性能造成一定的影响,那么使用按需加载以后就不需要引入css全局样式了,直接引入功能模块即可,既然需要设置按需 ...

  4. 详解Scrapy的命令行工具

    接触过Scrapy的人都知道,我们很多操作是需要借助命令行来执行的,比如创建项目,运行爬虫等.所以了解和掌握这些命令对于scrapy的学习是很有帮助的! Scrapy 命令 首先,在scrapy命令中 ...

  5. (转)Make 命令

    Make 命令 代码变成可执行文件,叫做编译(compile):先编译这个,还是先编译那个(即编译的安排),叫做构建(build). Make是最常用的构建工具,诞生于1977年,主要用于C语言的项目 ...

  6. 【刷题-LeetCode】213. House Robber II

    House Robber II You are a professional robber planning to rob houses along a street. Each house has ...

  7. java内部类概述和修饰符

    1 package face_09; 2 /* 3 * 内部类访问特点: 4 * 1,内部类可以直接访问外部类的成员. 5 * 2,外部类要访问内部类,必须建立内部类的对象. 6 * 7 * 一把用于 ...

  8. Mac中显示及隐藏文件和文件夹的方法

    一.方法一 直接在文件或文件夹名前面的加一个'.'点号,然后系统会弹出修改确认对话框,点好就行了. 隐藏文件 解除隐藏可以通过方法三显示所有隐藏文件,找到该文件去掉开头的'.',然后通过方法二来解除隐 ...

  9. Homework_3 (完整版)

    划水‍♂️!好耶! 果然还是逃不过作业,初三刚过就要营业 审题 爬虫+算法:划水中的员工 员工 A 此刻内心一酸,大年初一加班惨绝人寰,情不自禁打开 B 站,跟着网友一起划水看番. 但是由于技术故障原 ...

  10. MySQL 行锁、表锁

    1. 多个事务操作同一行数据时,后来的事务处于阻塞等待状态.这样可以避免了脏读等数据一致性的问题.后来的事务可以操作其他行数据,解决了表锁高并发性能低的问题 2.InnoDB的行锁是针对索引加的锁,不 ...