\(\mathcal{Description}\)

  Link.

  给一个 \(n\times n\) 的网格图,每个点是空格或障碍。\(q\) 次询问,每次给定两个坐标 \((r_1,c_1),(r_2,c_2)\),问最大的正方形边长 \(k\),满足 \(k\) 是奇数,且中心点在 \((r_1,c_1)\) 的正方形能够移动成为中心点在 \((r_2,c_2)\) 的正方形。

  \(n\le1000\),\(q\le3\times10^5\)。

\(\mathcal{Solution}\)

  这题咋黑了呢 owo?

  令障碍为 \(1\),空格为 \(0\),则一个正方形合法等价于子矩阵和为 \(0\),单次判断用前缀和做到 \(\mathcal O(1)\)。然后整体二分即可。

  复杂度 \(\mathcal O((n^2+q)\log n)\)。

\(\mathcal{Code}\)

#include <queue>
#include <cstdio>
#include <vector> typedef std::pair<int, int> pii; const int MAXN = 1000, MAXQ = 3e5;
const int MOVE[4][2] = { { -1, 0 }, { 0, -1 }, { 1, 0 }, { 0, 1 } };
int n, q, sum[MAXN + 5][MAXN + 5];
int ans[MAXQ + 5], color[MAXN + 5][MAXN + 5];
std::vector<pii> arrived; struct Query { int r1, c1, r2, c2, id; };
std::vector<Query> qrys; inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
} inline void wint ( const int x ) {
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
} inline bool legal ( const int r, const int c, const int rad ) {
int r1 = r - rad, c1 = c - rad, r2 = r + rad - 1, c2 = c + rad - 1;
return 0 <= r1 && 0 <= c1 && r2 <= n && c2 <= n
&& ! ( sum[r2][c2] - sum[r2][c1] - sum[r1][c2] + sum[r1][c1] );
} inline void paint ( const int sr, const int sc, const int rad, const int c ) {
static std::queue<pii> que;
que.push ( { sr, sc } ), color[sr][sc] = c;
arrived.push_back ( { sr, sc } );
while ( ! que.empty () ) {
pii p = que.front (); que.pop ();
for ( int w = 0, tx, ty; w < 4; ++ w ) {
tx = p.first + MOVE[w][0], ty = p.second + MOVE[w][1];
if ( ! color[tx][ty] && legal ( tx, ty, rad ) ) {
que.push ( { tx, ty } ), color[tx][ty] = c;
arrived.push_back ( { tx, ty } );
}
}
}
} inline void solve ( std::vector<Query>& curq, const int al, const int ar ) {
if ( curq.empty () ) return ;
if ( al == ar ) {
for ( auto q: curq ) ans[q.id] = al ? ( al << 1 ) - 1 : 0;
return ;
}
int amid = al + ar + 1 >> 1, col = 0;
for ( int i = amid, ei = n - amid + 1; i <= ei; ++ i ) {
for ( int j = amid, ej = n - amid + 1; j <= ej; ++ j ) {
if ( ! color[i][j] && legal ( i, j, amid ) ) {
paint ( i, j, amid, ++ col );
}
}
}
std::vector<Query> vecL, vecR;
for ( auto q: curq ) {
if ( color[q.r1][q.c1] && color[q.r1][q.c1] == color[q.r2][q.c2] ) vecR.push_back ( q );
else vecL.push_back ( q );
}
for ( pii c: arrived ) color[c.first][c.second] = 0;
arrived.clear ();
solve ( vecL, al, amid - 1 ), solve ( vecR, amid, ar );
} int main () {
n = rint ();
char tmp[MAXN + 5];
for ( int i = 1; i <= n; ++ i ) {
scanf ( "%s", tmp + 1 );
for ( int j = 1; j <= n; ++ j ) {
sum[i][j] = sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] + ( tmp[j] == '#' );
}
}
q = rint ();
for ( int i = 1, r1, c1, r2, c2; i <= q; ++ i ) {
r1 = rint (), c1 = rint (), r2 = rint (), c2 = rint ();
qrys.push_back ( { r1, c1, r2, c2, i } );
}
solve ( qrys, 0, n + 1 >> 1 );
for ( int i = 1; i <= q; ++ i ) wint ( ans[i] ), putchar ( '\n' );
return 0;
}

Solution -「CERC 2016」「洛谷 P3684」机棚障碍的更多相关文章

  1. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  2. Solution -「APIO 2016」「洛谷 P3643」划艇

    \(\mathcal{Description}\)   Link & 双倍经验.   给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...

  3. Solution -「JSOI 2019」「洛谷 P5334」节日庆典

    \(\mathscr{Description}\)   Link.   给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的).   \(|S|\le3\time ...

  4. Solution -「洛谷 P4372」Out of Sorts P

    \(\mathcal{Description}\)   OurOJ & 洛谷 P4372(几乎一致)   设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...

  5. Solution -「POI 2010」「洛谷 P3511」MOS-Bridges

    \(\mathcal{Description}\)   Link.(洛谷上这翻译真的一言难尽呐.   给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...

  6. 「洛谷4197」「BZOJ3545」peak【线段树合并】

    题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...

  7. 「洛谷3338」「ZJOI2014」力【FFT】

    题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...

  8. 「BZOJ2733」「洛谷3224」「HNOI2012」永无乡【线段树合并】

    题目链接 [洛谷] 题解 很明显是要用线段树合并的. 对于当前的每一个连通块都建立一个权值线段树. 权值线段树处理操作中的\(k\)大的问题. 如果需要合并,那么就线段树暴力合并,时间复杂度是\(nl ...

  9. 「洛谷3870」「TJOI2009」开关【线段树】

    题目链接 [洛谷] 题解 来做一下水题来掩饰ZJOI2019考炸的心情QwQ. 很明显可以线段树. 维护两个值,\(Lazy\)懒标记表示当前区间是否需要翻转,\(s\)表示区间还有多少灯是亮着的. ...

随机推荐

  1. redis 重启服务丢失 密码设置 现象 与 解决过程

    1. 前言 今天开电脑,开启redis服务后,项目使用redis的时候提示 不能找到 redisPools,并提示密码错误, 然后我用cmd打开却可以使用,真是奇了怪了!!! 2.使用现象: (1)c ...

  2. linux修改配置文件关闭终端失效问题

    当前shell环境为 交互式login-shell(非图形化界面环境) /etc/profile /etc/bash.bashrc ~/.profile ~/bashrc 当前环境为 交互式非logi ...

  3. php.ini配置文件中设置时区

    date.timezone设置php5默认date.timezone为utc,改为date.timezone = PRC即可解决时间相差八小时的问题

  4. Word2010格式化可爱的家乡

    原文链接:https://www.toutiao.com/i6487795632349118990/ 准备样文 选中"可爱的家乡",选择"开始"选项卡,&quo ...

  5. SSR远程密码修改

    第一:输入passwd 第二:填入旧密码 ,随后会有新密码设置 第三:回车两次就行了.

  6. HIVE理论学习笔记

    概述 参加了新的公司新的工作新的环境之后,本人必须学习更多的知识,所以稳固之前的知识和学习新的知识是重中之重,新的公司把hadoop大部分的组件都进行了架构源码深度改造,所以使用过程确实遇到一些麻烦, ...

  7. openGL绘图基本框架

    openGL绘图入门和导入外部文件 本文主要介绍通用绘图软件openGL的数据类型和基本的绘图框架,此外还提供了导入obj外部文件的方法,提供的代码稍作修改即可使用,希望能方便初学者快速上手. ope ...

  8. Java 内幕新闻第二期深度解读

    这是由 Java 官方发布,Oracle JDK 研发 Nipafx 制作的节目,包含 JDK 近期的研发进展和新特性展望和使用,这里加上个人译制的字幕搬运而来.我把 Nipafx 的扩展资料详细研读 ...

  9. Web开发之Cookie and Session

    会话 什么是会话? 简单说:用户开一个浏览器,点击多个超链接,访问服务器的多个web资源,然后关闭浏览器,整个过程就称之为一个会话. 会话过程要解决什么问题 每个用户在使用浏览器与服务器进行会话的过程 ...

  10. 学习鸟哥linux私房菜--安装中文输入法fcitx

    首先需要卸载前面安装的scim,查阅命令,参考网址如下 http://www.cnblogs.com/propheteia/archive/2012/06/26/2563383.html 链接中博主采 ...